

한국원자력학회 2022년 춘계학술발표회, (May 18-20, 2022) OpenFOAM 이용 공기냉각 RCCS 상승관 내 열전달현상 예측을 위한 *Phit-f k-ε* 난류모델 개선

Improvement of *Phit-f k-ɛ* turbulence model for the prediction of heat transfer phenomena inside an air-cooled RCCS riser using OpenFOAM

Sin-Yeob Kim, Chan-Soo Kim, and Hyoung Kyu Cho* (*chohk@snu.ac.kr)

Nuclear Hydrogen Research Team Korea Atomic Energy Research Institute, Republic of Korea

2022.05.20.

CONTENTS

Introduction and previous works

02

01

Findings from the experiment and discussion

03

Improvement of *Phit-f k-ε* turbulence model

04

05

Calculation results

Conclusions

Introduction

Reactor Cavity Cooling System, RCCS

- Passive safety system of VHTR
- Reduced scale experiment; KAERI, ANL and University of Wisconsin —
 - Heat transfer regime were changed with decreased inlet velocity \checkmark

Riser Heat transfer Experimental Facility, SNU-RHEF

- Heat transfer phenomena inside a single rectangular RCCS riser _
 - Local heat transfer coefficient along the elevation _
- Heat transfer deterioration under mixed convection heat transfer \checkmark

Heat Transfer Mode

Conduction

Free Convection

RCCS Air Flow

Outlet

Chimney

240 mm

40 mm Reacto

Gravit

Outside A

4.00

region): 4

(heated

b

Radiation

Reactor Vessel - No insulation

- Hiah Emissivity

-₩►

300mm

Upper

plenum

EL 3.75n

EL. 2.75m

eactor cavity

RPV

EL. 1.75m

Introduction

Mixed convection heat transfer

- Complicated heat transfer mechanism
 - Thermo-physical property variation
- Buoyancy-aided flow
 - Heat transfer deterioration
 - Natural circulation from chimney effect

350

300

Re8985HF402

- v² f

Realizable

EXP.

Re4847HF541

– – Realizable

 Δ EXP

[Jackson et al., 1989]

Re8921HF1070

Realizable

O EXP

Local flow characteristics under mixed convection

- Heat transfer mechanism needs to be investigated.
- Depending on the turbulence model, different predictions

Near-wall velocity according to buoyancy [Aicher, 1997]

CFD analysis results for SNU-RHEF experimental conditions [Kim et al., 2021]

Airflow visualization experiment

FROVE; <u>Four-Side Heating Riser Flow Visualization Experiment Facility</u>

- Transparent test section for flow visualization
 - Heating region: 2.0 m (\approx 60 D_b), Entrance region (PVC): 1.0 m (\approx 30 D_b) _
 - Inner test section: 120 mm × 20 mm × 2000 mm
 - Half sizes of the cross-section of prototype RCCS riser
 - FTO (Fluorine doped Tin Oxide) coated heat-resistant glass _
 - FTO: Transparent conducting material for resistive heating
 - Heating power \leftarrow Power supply, control panel (~ 300 °C)

FTO coated heat-resistant glass and its design

Research works

Previous researches

- Airflow visualization experiment
 - Local velocity fields inside a heated rectangular riser

- Turbulence model assessment (Limitations)

In the present study

- Findings from the experiment
 - 1 Density-gradient induced vortex motion
 - 2 Flow laminarization preceding near the corners

- Improvement of RANS turbulence model
 - ① Turbulence production related to the density-gradient
 - ② Flow characteristics along corner bisectors
- Calculations with modified turbulence model
 - Improved predictions for the experimental data

Reynolds shear stress

Mixed convection heat transfer

- Explanation for the heat transfer deterioration and enhancement
 - ; Changes in Reynolds shear stress distributions

Reynolds shear stress for buoyancy-opposed and buoyancy-aided flow [Kim et al., 2008]

Schematic diagram showing heat transfer for opposing (up) and aiding (down) mixed convection [Aicher and Martin, 1997]

Discussions

Overestimation of heat transfer in mixed convection with RANS turbulence models

② Flow characteristics near the corner regions

- ✓ Near wall distance
 - \rightarrow Influence of multiple walls is not considered.
 - Reduced turbulence production near the corners from the experiment and DNS results

More decrease of Reynolds shear stress;

With heating
 Near corners

Influences of buoyancy on heat transfer in a tube from simulations using RANS turbulence models and DNS calculations [W. S. Kim et al., 2008]

<u>8</u> 16

Discussion 1. Density-gradient induced vortex

Heating effect near the wall

- Temperature gradient along the wall-normal direction
- ✓ Large density gradient in the viscous sublayer → Another repetitive vortex motion independent of the wall-bounded vortex

Discussion 2. Flow characteristics along corner bisectors

Primary Reynolds shear stresses

Complex and low distribution near the corners

- ✓ Schematic diagrams for intuitive understanding of primary Reynolds shear stresses, $\overline{u'w'}$ and $\overline{u'v'}$
 - ① The shear stress distribution is formed along the wall-normal direction.
 - ② On the line of symmetry (corner bisector), they cancel each other formed from opposite (orthogonal) walls.

20 mm

120 mm

x, u y, v Z, W

(top view, at x = 1.4 m

<u>10</u> 16

Distance from the wall

Improvement of RANS turbulence model

Modification 1

- ; Turbulence production by the density-gradient induced vortex
- Magnitude; From the buoyancy production term, G_b
- Sign;
 - ① Gravity-perpendicular velocity gradient direction; $\frac{\nabla u_x}{|\nabla u_x|} = \frac{-\nabla u_x}{|\nabla u_x|}$
 - 2 Density gradient direction

$$G_b = -\frac{\mu_t}{\Pr_t} (\nabla \bar{\rho} \cdot \vec{g}) / \bar{\rho} \Rightarrow G_{gperp} = -\frac{\frac{\mu_t}{\Pr_t} |\vec{g}| \left(\nabla \bar{\rho} \cdot \frac{-V(U \cdot g)}{|\nabla (U \cdot g)|} \right)}{\bar{\rho}}$$

Modification 2

; Derivation of additional term for the flow characteristics along the corner bisector

Improvement of RANS turbulence model

PhitF $k-\varepsilon$ model in OpenFOAM v.2012 (Laurence et al., 2004)

Baseline model and modified model

Transport equations of baseline model Transport equations of modified model $\frac{\partial}{\partial t}(\rho k) + \nabla \cdot (\rho \vec{u} k) - \nabla^2 \left(\rho \left(\nu + \frac{\nu_t}{\sigma_k} \right) k \right) = \rho G_k - \frac{2}{3} \rho (\nabla \cdot \vec{u}) k - \frac{\rho}{\tau} k$ $\frac{\partial}{\partial t}(\rho k) + \nabla \cdot (\rho \vec{u} k) - \nabla^2 \left(\rho \left(\nu + \frac{\nu_t}{\sigma_k} \right) k \right) = \rho \left(G_k + G_b + G_{gperp} \right) - \frac{2}{3} \rho (\nabla \cdot \vec{u}) k - \frac{\rho}{\tau} k$ *k*: $\frac{\partial}{\partial t}(\rho\varepsilon) + \nabla \cdot (\rho\vec{u}\varepsilon) - \nabla^2 \left(\rho \left(\nu + \frac{\nu_t}{\sigma_c}\right)\varepsilon\right) = C_{\varepsilon 1}\rho \frac{G_k}{T} - \frac{2}{3}C_{\varepsilon 1}\rho (\nabla \cdot \vec{u})\varepsilon - C_{\varepsilon 2}\frac{\rho}{T}\varepsilon$ $\frac{\partial}{\partial t}(\rho\varepsilon) + \nabla \cdot (\rho\vec{u}\varepsilon) - \nabla^2 \left(\rho \left(\nu + \frac{\nu_t}{\sigma_c}\right)\varepsilon\right) = C_{\varepsilon 1} \rho \frac{\left(G_k + C_{\varepsilon 3}\left(G_b + G_{gperp}\right)\right)}{T} - \frac{2}{3}C_{\varepsilon 1}\rho(\nabla \cdot \vec{u})\varepsilon - C_{\varepsilon 2}\frac{\rho}{T}\varepsilon$:3 $f: \quad -\nabla^2 f = -\frac{f}{L^2} - \left((C_{f_1} - 1) \frac{\varphi - \frac{2}{3}}{T} - \frac{C_{f_2} G_k}{k} + C_{f_2 \frac{2}{3}} \nabla \cdot \vec{u} - \frac{2\nu (\nabla \varphi \cdot \nabla k)}{k} - \nu \nabla^2 \varphi \right) \frac{1}{L^2} \quad -\nabla^2 f = -2C_{corner} \left| \frac{\partial^2 f}{\partial \nu \partial z} \right| - \frac{f}{L^2} - \left((C_{f_1} - 1) \frac{\varphi - \frac{2}{3}}{T} - \frac{C_{f_2} (G_k + G_b + G_{gperp})}{k} + C_{f_2 \frac{2}{3}} \nabla \cdot \vec{u} - \frac{2\nu (\nabla \varphi \cdot \nabla k)}{k} - \nu \nabla^2 \varphi \right) \frac{1}{L^2}$ $\boldsymbol{\varphi}; \quad \frac{\partial}{\partial t}(\rho\varphi) + \nabla \cdot (\rho\vec{u}\varphi) - \nabla^2 \left(\rho \left(\nu + \frac{\nu_t}{\sigma_{\varphi}}\right)\varphi\right) = \rho f - \rho\varphi \left(\frac{G_k}{k} - \frac{2}{3}\nabla \cdot \vec{u} - \frac{2\nu(\nabla\varphi \cdot \nabla k)}{k\sigma_{\varphi}\varphi}\right) \qquad \frac{\partial}{\partial t}(\rho\varphi) + \nabla \cdot (\rho\vec{u}\varphi) - \nabla^2 \left(\rho \left(\nu + \frac{\nu_t}{\sigma_{\varphi}}\right)\varphi\right) = \rho f - \rho\varphi \left(\frac{(G_k + G_b + G_{gperp})}{k\sigma_{\varphi}\varphi}\right) - \frac{2}{3}\nabla \cdot \vec{u} - \frac{2\nu(\nabla\varphi \cdot \nabla k)}{k\sigma_{\varphi}\varphi}\right)$ $T = \max\left(\frac{k}{\varepsilon}, c_T \frac{\sqrt{\max(\nu, 0)}}{\varepsilon}\right)$ $T = \max\left(\frac{k}{\varepsilon}, c_T \frac{\sqrt{\max(\nu, 0)}}{\varepsilon}\right)$ $L = C_L \max\left(\frac{k^{1.5}}{\varepsilon}, C_\eta \left(\frac{(\max(\nu, 0))^3}{\varepsilon}\right)^{0.25}\right)$ $L = C_L \max\left(\frac{k^{1.5}}{\varepsilon}, C_\eta \left(\frac{(\max(\nu, 0))^3}{\varepsilon}\right)^{0.25}\right)$

Calculation conditions

OpenFOAM v.2012 (2020.12.)

- PhitF $k-\varepsilon$ turbulence model and with modifications

Calculation geometry

- Quarters of the geometry with symmetry planes (average y + < 0.5)
- Solid part (for the stability of calculation near the corners)

Boundary conditions

- Temperature gradient on the outer wall
- Inlet average velocity with corresponding turbulence quantities

•	Physical models (Steady condition)		
	Fluid part	Solid parts	
Solver	chtMultiRegionSimpleFoam (conjugate heat transfer)		
Thermo. type	heRhoThermo	heSolidThermo	
Transport	k, μ ; polynomial	k; constlso	
Thermo	c_p ; hPolynomial	c _p ; hConst	
Equation of State	PengRobinsonGas	rhoConst	
Energy	sensibleEnthalpy	sensibleEnthalpy	
Pr _t	0.85	-	

 Used meshes for the calculation geometry (Depth x Width x Length) 				
	Mesh of fluid part	Mesh of total geometry		
Cylinder	120x40x500 (Whole)	140x40x500 (Whole)		
Aspect ratio = 6	20x60x1000 (Quarter)	25x65x1000 (Quarter)		
Aspect ratio = 3	21x45x1000 (Quarter)	26x50x1000 (Quarter)		
Aspect ratio = 1	30x30x1000 (Quarter)	35x35x1000 (Quarter)		

• Example of the generated mesh (Aspect ratio = 3)

Boundary conditions of properties of fluid

	Wall	Inlet	Outlet
U	fixedValue; 0	fixedValue	zeroGradient
k	fixedValue; 0	$\frac{3}{2}(IU_{in})^2$	zeroGradient
Е	epsilonWallFunction	$\frac{C_{\mu}^{3/4}k^{3/2}}{L}$	zeroGradient
f	fixedValue; 0	zeroGradient	zeroGradient
phit	fixedValue; 0	fixedValue; 0.66	zeroGradient
nut	nutUWallFunction	calculated	zeroGradient
p_rgh	fixedFluxPressure	zeroGradient	FixedMean

 $I = 0.16 \text{Re}^{-1/8}, L = 0.07 D_{\mu}$

Validation for modified turbulence model (1/2)

Comparison between the baseline and modified model (including density-gradient induced vortex)

- PhitF *k*- ε model in OpenFOAM v.2012
- $C_{corner} \rightarrow 1.6$
- Without heating (Case-2 from FROVE experiment)

In mixed convection (Case-9 from FROVE experiment); flow laminarization preceding near the corner turbulent kinetic energy, k

10

120 mm

Baseline

Baseline

0.1

 10^{4} Bo (Bo=Gr/Re³Pr^{0.5})

0.01

— Modified

— Modified

Baseline — Modified

x, u y, v

20 mm

Z, W

(top view, at x = 1.4 m)

Distance from the wall

Validation for modified turbulence model (2/2)

Comparison with the experimental data

- Modified PhitF k- ε model predicts the experimental data closely. —
- $C_{corner} = 1.4 and 1.6$
- Case-2 (Re=5500, ∆T=0K)

Conclusions

Experimental researches

- Experimental data in forced and mixed convection
 - Local flow structure & turbulence quantities

- ✓ Gravity-perpendicular density-gradient induced vortex
 - Explanation for the heat transfer mechanism in the mixed convection
- ✓ Flow characteristics along corner bisectors
 - Cancellation of Reynolds shear stress along corner bisectors

Improvement of turbulence model

- Modification of RANS turbulence model
 - Production term from the gravity-perpendicular density-gradient
 - Elliptic relaxation equation for the flow behavior near the corner
- Improvement of the prediction with RANS turbulence model
 - Local flow characteristics and heat transfer coefficients

