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Introduction

Reactor Cavity Cooling System, RCCS

Passive safety system of VHTR

v Heat transfer regime were changed with decreased inlet velocity

Riser Heat transfer Experimental Facility, SNU-RHEF

Reduced scale experiment; KAERI, ANL and University of Wisconsin

Heat transfer phenomena inside a single rectangular RCCS riser
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~ Design parameters of RHEF
— 240mm x 40 mm x 4000mm (W x D x H)
— Working fluid : air in atmospheric pressure
— Flow direction : Upward flow (Buoyancy-aided)
— Inlet Re: 3000 — 16000
— Heat flux: 300 — 1800 W/m?
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Introduction

Hot plate 2-
Mixed convection heat transfer TTT
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Local flow characteristics under mixed convection
— Heat transfer mechanism needs to be investigated.
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Top view

Airflow visualization experiment 130mm

FROVE; Four-Side Heating Riser Flow Visualization Experiment Facility

. o Amm-thick
— Transparent test section for flow visualization mm-thickness

— Heating region: 2.0 m (= 60 D,)), Entrance region (PVC): 1.0 m (= 30 D,))

— Inner test section: 120 mm x 20 mm x 2000 mm —

Cross section

. lﬂ 120 mm

— Half sizes of the cross-section of prototype RCCS riser

N
— FTO (Fluorine doped Tin Oxide) coated heat-resistant glass tiliod (g5t
section (2 m)
— FTO: Transparent conducting material for resistive heating
— Heating power « Power supply, control panel (~ 300 °C)
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FTO coated heat-resistant glass and its design Schematics of airflow visualization experiment facility and its test section E



Research works

— Previous researches ~ In the present study N
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v Findings from the experiment

v Airflow visualization experiment @ Density-gradient induced vortex motion

— Local velocity fields inside a heated rectangular riser @ Flow laminarization preceding near the corners
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Reynolds shear stress

Mixed convection heat transfer
Explanation for the heat transfer deterioration and enhancement

; Changes in Reynolds shear stress distributions
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Discussions

Overestimation of heat transfer in mixed convection with RANS turbulence models

— Heat transfer phenomena not included in RANS turbulence modeling

v
hot

cold

(O Density gradient in the radial direction

Mean temperature gradient (< Reynolds averaging)
; Buoyancy production, G, = ,8:—: (VT - g) is negligible
t

in the vertical direction.
In the developed region, axial mean VT « radial mean VT

2@ Flow characteristics near the corner regions

Top view of rectangular duct

\ corner bisector
\

symmetry line

v" Near wall distance

- Influence of multiple walls is not considered.

v" Reduced turbulence production near the corners

from the experiment and DNS results

@ With heating

v" More decrease of Reynolds shear stress:

@ Near corners
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Discussion 1. Density-gradient induced vortex

Heating effect near the wall

— Temperature gradient along the wall-normal direction

v Large density gradient in the viscous sublayer = Another repetitive vortex motion independent of the wall-bounded vortex

. Buoyancy-aided flow
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Discussion 2. Flow characteristics along corner bisectors

Primary Reynolds shear stresses

— Complex and low distribution near the corners
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v' Schematic diagrams for intuitive understanding of primary Reynolds shear stresses, u'w’ and u'v’

@ The shear stress distribution is formed along the wall-normal direction.

@ On the line of symmetry (corner bisector), they cancel each other formed from opposite (orthogonal) walls.
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» Along the corner bisectors, the Reynolds shear stress is canceled in reality, rather than superposed.

v" Cancellation of the linear relationships from orthogonal walls
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Improvement of RANS turbulence model

Modification 1

Buoyancy-opposing flow

. . . . Buoyancy-aiding flow
; Turbulence production by the density-gradient induced vortex yaney J
Hot wall Cold wall Hot wall Cold wall
— Magnitude; From the buoyancy production term, G, Ix B omallB Ix i il
— Sign; = ‘ ( ) ‘ ( )
v -v(U-g
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Modification 2

; Derivation of additional term for the flow characteristics along the corner bisector
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Flow characteristics near corner region in a rectangular duct
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Improvement of RANS turbulence model

PhitF k= model in OpenFOAM v.2012 (Laurence et al., 2004)

— Baseline model and modified model

Transport equations of baseline model Transport equations of modified model
] ]
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I Calculation conditions

* Used meshes for the calculation geometry (Depth x Width x Length)

Open FOAM v.2012 (2020.12.) Mesh of fluid part Mesh of total geometry
— PhitF k-¢ turbulence model and with modifications Cylinder 120x40x500 (Whole) 140x40x500 (Whole)
Aspect ratio = 6 20x60x1000 (Quarter) 25x65x1000 (Quarter)
Calculation geom et ry Aspect ratio = 3 21x45x1000 (Quarter) 26x50x1000 (Quarter)
_ Quarters of the geometry with Symmetry planes (average y+ < 0.5) Aspect ratio = 1 30x30x1000 (Quarter) 35x35x1000 (Quarter)
— Solid part (for the stability of calculation near the corners) *  Example of the generated mesh (Aspect ratio = 3)
Boundary conditions Solid part
— Temperature gradient on the outer wall 2 / 2 ﬁ
— Inlet average velocity with corresponding turbulence quantities Fluid part 5
»  Physical models (Steady condition) *  Boundary conditions of properties of fluid
Fluid part Solid parts Wall Inlet Outlet
Solver chtMultiRegionSimpleFoam (conjugate heat transfer) U fixedValue; O fixedValue zeroGradient
Thermo. type heRhoThermo heSolidThermo k fixedValue; O ;(lUm)Z zeroGradient
Transport k, u; polynomial k; constlso I3 epsilonWallFunction Ci/zkm zeroGradient
Thermo cp; hPolynomial cp; hConst f fixedvalue; O zeroGradient zeroGradient
Equs?g?: of PengRobinsonGas rhoConst phit fixedValue; 0 fixedValue; 0.66 zeroGradient
Energy sensibleEnthalpy sensibleEnthalpy nut nutUWallFunction calculated zeroGradient
Pry 0.85 - p_rgh fixedFluxPressure zeroGradient FixedMean

I = 0.16Re1/8 [ = 0.07D,



Validation for modified turbulence model (1/2)

Comparison between the baseline and modified model (including density-gradient induced vortex)

PhitF k-¢ model in OpenFOAM v.2012
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120 mm

Validation for modified turbulence model (2/2) I

(top view, at x = 1.4 m)

Distance from the wall

Comparison with the experimental data
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Conclusions

Experimental researches
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v' Experimental data in forced and mixed convection v Gravity-perpendicular density-gradient induced vortex
— Local flow structure & turbulence quantities — Explanation for the heat transfer mechanism in the mixed convection
v' Turbulence model assessment v" Flow characteristics along corner bisectors
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