Evaluation of Delayed Neutron Fraction in TRU-loaded Molten Salt Reactor

한국 원자력학회 2021 추계 학술발표회 October 21, 2021

Eunhyug Lee^a, Tae-suk Oh^a, HyeonTae Kim^a, and Yonghee Kim^{a*}

^aDepartment of nuclear & Quantum Engineering (KAIST)

Contents

1. Introduction

- Explanation of MSR & Objectives

2. Description of the Simplified MSR Core

- Composition of candidates of fuel salt
- Structure of MSR core design

3. Numerical Results

- Delayed neutron fraction loss and reactivity loss

4. Summary and Conclusions

Introduction (1/2)

Molten-salt reactor (MSR)

- Reactor that uses molten salt as fuel and coolant
- No severe accident / Strong negative feedback
- One of the most promising reactors of Gen IV

Oak Ridge National Laboratory (ORNL) MSR

- Thermal neutron
- It needs to online fuel reprocessing \rightarrow Hard to commercialize due to proliferation issue
- Graphite moderator \rightarrow Large amount of radioactive waste
- \rightarrow Molten Salt Fast Reactor can overcome aforementioned adversities

Molten-salt fast reactor

- Exclusion of graphite moderator \rightarrow Less radioactive waste / more simple structure
- High conversion ratio \rightarrow High fuel economy from high burnup

Introduction (2/2)

Change of reactor parameters by fuel circulation

- Delayed neutron fraction (β)
 - $\beta_{g} = \frac{\iiint v_{d,g} \Sigma_{f}(\vec{r}, E) \phi(\vec{r}, E, \vec{\Omega}) dV dE d\vec{\Omega}}{\iiint v \Sigma_{f}(\vec{r}, E) \phi(\vec{r}, E, \vec{\Omega}) dV dE d\vec{\Omega}}$
 - Providing longer reactor period / offering criterion for desirable reactor control
- Delayed neutron fraction (β) loss due to fuel circulation
 - Delayed neutrons emitted in inactive core region are deserted without being used for fission
 - Demanding more precise reactivity control \rightarrow may incur safety concerns
- Reactivity loss due to fuel circulation
 - Analogous to the case of delayed neutron fraction

Objectives

- Analyzing MSR using Monte Carlo based core analysis code
- Observing change of reactor parameters due to fuel circulation
- Sensitivity analyses of reactor parameters with respect to salt composition & circulation

Description of the Simplified MSR Core (1/4)

Reactor model

- For simplification, cylindrical core is modelled
- Reflector for neutron economy
- Inactive core (heat exchanger) at outside of reflector
 - Connected to active core \rightarrow fuel circulation

Dimension and composition of materials

- Reactor vessel
 - Material: Hastelloy-N (Nickel based alloy)
 - Thickness: 10 cm
- Reflector
 - Material: Stainless steel
 - Thickness: 40 cm
- Fuel salt in core
 - Three candidates: NaCl-TRUCl₃, KCl-TRUCl₃, NaCl-MgCl₂-TRUCl₃

Description of the Simplified MSR Core (2/4)

Compositions of fuel salts

- Eutectic points of these three salts for liquid state
- Phase diagram of PuCl₃ have been used for TRUCl₃ (Differentiation have been made for TRU)
 - Melting points of all three salts lie below 500°C

Description of the Simplified MSR Core (3/4)

TRU composition vector

Actual TRU

Element	Mass ratio
U	20.18
TRU	70.95
RE	8.87

Element	Mass ratio	Element	Mass ratio	Element	Mass ratio
U	20.177	Bk	3.04E-11	Nd	4.562
Ac	7.27E-10	Cf	1.36E-07	Pm	0.010
Th	5.25E-05	Yb	7.00E-07	Gd	0.184
Pa	4.20E-06	Lu	2.29E-20	Tb	0.003
Np	4.350	Y	0.011	Dy	0.002
Pu	60.583	La	0.588	Но	1.06E-04
Am	5.513	Ce	2.309	Er	4.08E-05
Cm	0.508	Pr	1.200	Tm	3.32E-07

Conventional TRU composition from spent nuclear fuel

– Pure TRU

Element	Mass ratio		Element	Mass ratio	Element	Mass ratio	Element	Mass ratio
TRU	100.00		Ac	1.02E-09	Np	6.131	Cm	0.716
110	100.00	J	Th	7.40E-05	Pu	85.383	Bk	4.28E-11
			Pa	5.92E-06	Am	7.770	Cf	1.92E-07

Actual TRU and pure TRU both will be used for core analysis

Description of the Simplified MSR Core (4/4)

Simplified cylindrical MSR core

- Square cylinder model (H / D = 1.0)
 - Moderately minimizes the reactor volume
- Excluded inactive core for simple analysis

Numerical calculation for core dimension

Fuel		Actual TRU	Pure TRU		
1401	D [cm]	$k_{\rm eff}$ (± SD [pcm])	D [cm]	$k_{\rm eff}$ (± SD [pcm])	
62NaCl-38TRUCl ₃	70	1.07804 (± 20)	50	1.07006 (± 21)	
43KCl-57TRUCl ₃	62	1.09866 (± 23)	42	1.04250 (± 23)	
62NaCl-18MgCl ₂ -20TRUCl ₃	110	1.04445 (± 21)	80	1.06828 (± 20)	

High composition of TRU results in small size of reactor

Numerical Results (1/8)

KAIST iMC

- Monte Carlo based neutron transport and reactor analysis code
- It can analyze change of reactor properties during flowing fuel
- Sample number
 - History number: 50,000
 - Inactive cycle number: 50
 - Active cycle number: 200

Recirculation time according to fuel speed

- Fuel flows from bottom to top with constant speed (V_{fuel})
- Fuel departing from the core comes back after some time elapsed (T_c : recirculation time)

V _{fuel} [cm/s]	0	5	7.5	10	15
<i>T_c</i> [s]	-	30	20	15	10

No differentiation of travel length through inactive core

Numerical Results (2/8)

Delayed neutron fraction loss and reactivity loss using actual TRU

- 62NaCl-38TRUCl₃ (Actual TRU)
 - Diameter: 70 cm
 - Multiplication factor: 1.07804 (±20 pcm)
 - Delayed neutron fraction with stationary fuel: 296 (\pm 3 pcm)

Numerical Results (3/8)

Delayed neutron fraction loss and reactivity loss using actual TRU

- 43KCl-57TRUCl₃ (Actual TRU)
 - Diameter: 62 cm
 - Multiplication factor: 1.09866 (±23 pcm)
 - Delayed neutron fraction with stationary fuel: 298 (\pm 3 pcm)

Numerical Results (4/8)

Delayed neutron fraction loss and reactivity loss using actual TRU

- 62NaCl-18MgCl₂-20TRUCl₃ (Actual TRU)
 - Diameter: 110 cm
 - Multiplication factor: 1.04445 (±21 pcm)
 - Delayed neutron fraction with stationary fuel: $300 (\pm 3 \text{ pcm})$

Numerical Results (5/8)

Delayed neutron fraction loss and reactivity loss using pure TRU

- 62NaCl-38TRUCl₃ (Pure TRU)
 - Diameter: 50 cm
 - Multiplication factor: 1.07006 (±21 pcm)
 - Delayed neutron fraction with stationary fuel: $274 (\pm 3 \text{ pcm})$

Numerical Results (6/8)

Delayed neutron fraction loss and reactivity loss using pure TRU

- 43KCl-57TRUCl₃ (Pure TRU)
 - Diameter: 42 cm
 - Multiplication factor: 1.04250 (±23 pcm)
 - Delayed neutron fraction with stationary fuel: $270 (\pm 3 \text{ pcm})$

Numerical Results (7/8)

Delayed neutron fraction loss and reactivity loss using pure TRU

- 62NaCl-18MgCl₂-20TRUCl₃ (Pure TRU)
 - Diameter: 80 cm
 - Multiplication factor: 1.06828 (±20 pcm)
 - Delayed neutron fraction with stationary fuel: $272 (\pm 3 \text{ pcm})$

Numerical Results (8/8)

Delayed neutron fraction loss and reactivity loss

– Actual TRU

	62NaCl-38TRUCl ₃		43KC1-5	7TRUCl ₃	62NaCl-18MgCl ₂ -20TRUCl ₃	
V _{fuel} [cm/s]	β loss [pcm]	ρ loss [pcm]	β loss [pcm]	ρ loss [pcm]	β loss [pcm]	ρ loss [pcm]
0	-	-	-	-	-	-
5	95 (±4)	69 (±26)	$102 (\pm 3)$	79 (±25)	76 (±4)	2 (±26)
7.5	$114 (\pm 4)$	92 (±25)	$124 (\pm 3)$	64 (±26)	$90(\pm 4)$	33 (±27)
10	$128 (\pm 4)$	$118 (\pm 25)$	138 (±4)	$102 (\pm 27)$	$102 (\pm 4)$	26 (±26)
15	$146 (\pm 4)$	$130(\pm 26)$	$159 (\pm 3)$	$104 (\pm 26)$	$115 (\pm 4)$	$14 (\pm 28)$

- Pure TRU

	62NaCl-38TRUCl ₃		43KCl-5	7TRUCl ₃	62NaCl-18MgCl ₂ -20TRUCl ₃	
V _{fuel} [cm/s]	β loss [pcm]	ρ loss [pcm]	β loss [pcm]	ρ loss [pcm]	β loss [pcm]	ρ loss [pcm]
0	-	-	-	-	-	-
5	116 (±4)	90 (±26)	$120(\pm 4)$	103 (±29)	$80(\pm 4)$	32 (±25)
7.5	132 (±4)	70 (±27)	139 (±4)	$102 (\pm 29)$	95 (±4)	115 (±26)
10	143 (±3)	95 (±27)	153 (±3)	119 (±29)	$114(\pm 4)$	$120 (\pm 26)$
15	163 (±3)	122 (±27)	$167 (\pm 3)$	$158(\pm 29)$	$126 (\pm 3)$	111 (±27)

Summary and Conclusions

1. Fuel flow results in delayed neutron fraction loss and reactivity loss

2. Factors affecting attributes of the reactor

- Fuel circulation speed:
 - Faster the fuel circulation goes \rightarrow more loss of delayed neutron fraction and reactivity
- Composition of fuel salt:
 - Higher Pu concentration \rightarrow the smaller reactor size \rightarrow longer residence time in inactive core
 - \rightarrow more loss of delayed neutron fraction and reactivity

3. Meticulous measures must be taken for selecting fuel salt and its circulation speed

Thank you for your attention. Any question?

