High Temperature Helium Heater for 800°C Steam Supply to a Lab– scale HTE Device

 $E \models mc^2$

SungDeok Hong*, HongSik Lim and ChanSoo Kim (Korea Atomic Energy Research Institute)

KNS2021, October 20-22, 2021

한국원자력연구원

Introduction

- A Lab-scale helium loop for simulating a VHTR (Very High Temperature Gas Cooled Reactor) is now under constructing at the Korea Atomic Energy Research Institute. The Lab-scale helium loop will be connected to 30kW capacity "High Temperature Electrolysis (HTE) system" as a function of high-temperature steam supply to the HTE device. A *high-temperature heater* (HTH) heating the 4.0MPa helium up to 1000°C is one of key components in the Lab-scale helium loop
- In this study, we discuss the design methodology for a high-temperature heater. The HTH design output are validated by the thermal-hydraulic analyses using GAMMA+ code

HTE Experimental Loop

High-temp. Helium Heater

- Vessel
 - 114mm outer diameter (SS304)
- Internal insulator
 - Kaowool ceramic fiber (1600°C)
- Corundum liner
 - Prevention of dust ingress
 - Low conductivity (2.0 W/mK)
- Heater element
 - Carbon fiber composite (CFC)
 - 2x2 bundle, 2.3m heated length
- BNP-ceramic spacer
- Mo & Ni electric connectors

KAERI

Korea Atomic Energy

Mechanical Design Requirements

- **Flow induced vibration**
 - Reduced velocity

$$\frac{U_{Critical}}{fD} = K \sqrt{2\pi\zeta \frac{m}{\rho D^2}}$$

- Acoustic vibration
 - Speed of sound in a gas

$$\upsilon_{S} = \sqrt{\frac{\gamma \Re T}{M}}$$

- **Thermal stress**
 - Generated as components attempt to expand against restraints or non-uniform temperature distribution within the body
 - Appropriate Internal insulations for keeping the steel boundaries

Item	Design Requirement					
Helium outlet T	≤ 1000 °C					
FIV	U/(fD)	< 22				
AV	v_{s}	<< 1739 m/s				
Temperature limit (Material)	 Heater element Ceramic Liner Insulator Vessel (Alloy) Vessel (304SS) 	< 1500 °C < 1300 °C < 1200 °C < 450 °C < 360 °C				

GAMMA+ Analysis

- GAMMA+ model
 - Four heater is lumped to one heater
 - Nodes
 - Axial 22 cells
 - Radial 17 cells
 - Radiation : View factor model (two zones)
- Main results
 - Vessel temperature is the main constraint of high-temperature heater operation
 - Helium flow is under laminar and mixed flow condition at Case 1
 - Helium flow is under mixed and week turbulent flow condition at Case 2

*Temperature limit: Vessel 360°C, Heater 1500°C

Flowrate	Reynolds	Power	T-heater	T-vessel	Heat loss		
(kg/min)	No.(outlet)	(kW)	Max. (℃)	Max. (℃)	(kW)		
Case 1 (flow area = 0.003161 m ²)							
0.2	533	12.4	1084.9	338.5	3.76		
0.4	1070	21.0	1068.7	335.3	3.59		
0.6	1580	29.6	1105.9	340.9	3.68		
0.8	2100	38.5	1194.5	_360.0	3.94		
1.0	2310	47.2	1269.4	2372.9	4.23		
Case 2 (flow area = 0.001571 m ²)							
0.2	1060.0	12.4	1057.2	333.8	3.54		
0.4	2330.0	21.3	1142.0	348.5	3.84		
0.6	3580.0	30.2	1252.4	368(2	4.32		
0.8	4290.0	38.8	1231.1	358.2	4.18		
1.0	5370.0	47.3	1232.2	354.8	4.12		
				and the second second	1 the second		

GAMMA+ Analysis

- Comparison between helium and nitrogen
 - Temperature of the nitrogen gas heater increases by about 60°C to produce the same amount of power(29.6 kW) as helium gas heater. In the case of the vessel, it decreased by 39°C. This is because helium gas is a mixed flow whereas nitrogen gas is a sufficiently developed turbulence flow
 - Helium gas does not easily generate turbulence compared to nitrogen gas

Parameter	Unit	Case 1		Case 2	
		He	N2	He	N2
T-heater Max.	°C	1106	1166	1252	1246
T-vessel Max.	°C	341	302	368	317
Heat loss	kW	3.68	2.83	4.32	3.16
Flowrate	kg/min	0.6	2.8	0.6	2.8
Reynolds No.	-	1580	8360	3580	16600
Power	kW	29.6	29.6	30.2	30.2

Pressure: 3.0MPa, Inlet/outlet temp.: 500/1000 $^{\circ}$ C

Conclusion

- A high-temperature heater (HTH) heating the 4.0MPa helium up to 1000°C is one of key components in the Lab-scale helium loop that will be connected to 30kW capacity HTE system as a function of high-temperature steam supply to the HTE device. Thermal performance of the main heater is validated by a GAMMA+ analyses.
- As a result of the GAMMA+ analysis, it is found that helium gas does not easily generate turbulence compared to nitrogen gas. That is, in order to form a turbulent flow, helium gas requires a relatively small flow area compared to nitrogen gas. The normal operation of the 30kW HTE helium heater was 3.0MPa and 0.4kg/min, which was interpreted as satisfying all design requirements in case 2.
- From the GAMMA+ analyses, it is found that the vessel temperature is the main constraint of HTH operation.

