Depletion of molten salt reactor with online salt conditioning in the Monte Carlo iMC code

September 16, 2021

Inyup Kim

Nuclear Reactor Physics & Transmutation Lab.

Department of Nuclear and Quantum Engineering Korea Advance Institute of Science and Technology (KAIST)

Introduction

- Molten salt reactor, MSR
 - One of the Gen IV advanced reactor systems
 - Utilize liquid fuel in the form of salt
 - Using liquid fuel enables unique concepts
 - Helium bubbling
 - Off-gas system
 - Online refueling
- Considering the systems is necessary for accurate MSR simulation
 - Material composition change affects depletion calculation
- Implementation of the systems is studied

Method

Fictitious decay constant

- Circulation time and removal efficiency given
 - Circulation time: Δt , removal efficiency: ϵ
 - Removal is proportional to concentration N
 - Adopt fictitious decay constant
 - » Decay rate is proportional to concentration
- Applying fictitious decay constant λ_R to represent removal:

$$\frac{dN}{dt} = -\lambda_R N \to N(t) = N(0) \exp[-\lambda_R t]$$

- Let removal occurs when nuclide reaches certain point in the reactor (i.e. top)
 - Number of removed nuclides

$$\epsilon \equiv \frac{[removed]}{[reached]} = \frac{Rate \ of \ removal}{Rate \ of \ reaching \ top} = \frac{R}{Rate \ of \ volume \ reaching \ top} \times \frac{1}{Number \ density} \rightarrow R = \epsilon A \nu N$$

– Number of removed nuclide until time t

Removed in time
$$t = V(N(0) - N(t)) = VN(0)(1 - e^{-\lambda_R t}) = \epsilon AvtN(0)$$

$$1 - e^{-\lambda_R \Delta t} = \epsilon \rightarrow \lambda_R = -\frac{\ln(1 - \epsilon)}{\Delta t}$$

Method

Applying to burnup calculation

- Typical ODE regarding nuclide production/loss

$$\frac{dN_i}{dt} = \sum_{j \neq i} (l_{ij}\lambda_j + f_{ij}\sigma_j\phi)N_j(t) - (\lambda_i + \sigma_i\phi)N_i(t)$$

- Using fictious decay constant to consider removal

$$\frac{dN_i}{dt} = \sum_{j \neq i} \left(l_{ij}\lambda_j + f_{ij}\sigma_j\phi \right) N_j(t) - (\lambda_i + \lambda_{Ri} + \sigma_i\phi) N_i(t)$$
$$\lambda_{Ri} = -\frac{\ln(1 - \epsilon_i)}{T_i}$$

where ϵ_i is removal efficiency and T_i is circulation time of nuclide i

Method

Continuous refueling scheme

- During burnup, fissionable nuclides removed due to fission reaction
- Continuous refueling aims to compensate fissionable nuclide loss
 - Feed fissionable material with rate identical to fission rate

$$\Delta \frac{dN_i}{dt} = +r_i R_{fission}$$

where r_i is fraction of nuclide i in the feed

• Rate of fission is summation of all fissionable material's fission rate

$$\Delta \frac{dN_i}{dt} = + \sum_{j=fiss.} r_i \sigma_{j,f} \phi N_j$$

- Fission rate is proportional to neutron flux
 - Fictitious cross-section can be applied to consider neutron flux

$$\frac{dN_i}{dt} = \sum_{j \neq i} (l_{ij}\lambda_j + f_{ij}\sigma_j\phi)N_j(t) - (\lambda_i + \lambda_{Ri} + \sigma_i\phi)N_i(t) + \sum_{j=fiss.} r_i\sigma_{j,f}\phi N_j$$

Validation

Validation problem

- Molten salt reactor model
 - 67KCl-33TRUCl fuel
 - Hastelloy-n cylindrical containment
 - SS reflector
 - 100MWth
- Monte Carlo simulation done with iMC code
 - 100 inactive cycles, 200 active cycles
 - 20,000 histories per cycle
 - Standard deviation ~ 30pcm

Validation

Validation problem

- Off-gas system
 - Applied for only noble gas and noble metals
 - Noble metal: Mo, Tc, Se, ...
 - Noble gas: Kr, Xe
 - Varied removal efficiency and circulation time T

Case #	Noble metal	Noble gas	Circulation time
Reference	0 %	0 %	
Case 1	90 %	90 %	
Case 2	50 %	50 %	10s
Case 3	90 %	50 %	
Case 4	90 %	0 %	

- Online refueling
 - Tested continuous refueling
 - Refuel with fresh fuel (67KCl-33TRUCl)

Nuclide removal

- k-eff comparison
 - k-eff increased in case 1-3
 - Reactor removal efficiency merely affects reactor performance since $t_{circulation} \ll burnup step$
 - Case 4 agrees with reference
 - Solely removing noble gas does not affect reactivity

Nuclide removal

- Nuclide concentration
 - Nuclide concentration estimation
 - Recalculate with identical removal coefficient except target nuclide
 - Estimate target nuclide concentration with removal efficiency and circulation time.
 - Since T << burnup step, for stable nuclide, equilibrium will be obtained
 - Assumption: target fission product accumulation merely affect reactor performance

Nuclide removal

– Equilibrium

$$N_{eq} = \left([Prod.rate] \times T + N_{eq} \right) \times (1 - \epsilon_i) \rightarrow N_{eq} = \frac{1 - \epsilon}{\epsilon} [Prod.in T]$$

- Method
 - Assume production rate is constant in each burnup steps
 - N_i^{rec} : Concentration of target nuclide from recalculated result at burnup step i.
 - $N_{i+1}^{rec} N_i^{rec} = Prod.rate \times (t_{i+1} t_i) \rightarrow Prod.rate = \frac{N_{i+1}^{rec} N_i^{rec}}{\Delta t_i}$

Nuclide removal

– Noble gas removal: Kr-84 (stable)

Nuclide removal

- Noble metal removal: Mo-97 (stable)

Refueling

- k-eff loss is partly compensated due to continuous refueling
- Loss of fissionable may be originated from other reactions
- Pu-239 is conserved, while reactivity decline is noticeable.

Conclusion

- Nuclide removal and online refueling is implemented in iMC
 - Both system affects reactor performance significantly
 - Applied to the reactor model and compared to conventional depletion calculation.
 - Nuclide removal showed clear performance improvement
 - Furthermore, material-wise comparison agreed with removal scheme
 - Continuous refueling showed increase in reactor performance
 - Pu-239 depletion compensated
- Further research is required to contemplate more realistic MSR reactor system.

Thank you for your attention!

