

# Validity Analysis of a HT9 Creep Correlation

### Cheol Min Lee<sup>a\*</sup>, Dongha Kim<sup>a</sup>, Jun-Hwan Kim<sup>a</sup>, June-Hyung Kim<sup>a</sup>, Jin-Sik Cheon<sup>a</sup>

<sup>a</sup>Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea \**Corresponding author: cmlee@kaeri.re.kr* 

## **1. Introduction**

Comparing to previous light water reactors (LWR), sodiumcooled fast reactor (SFR) is characterized with higher temperature (~600 °C), sodium coolant, higher fast neutron irradiation (~100 dpa) and higher burn-up (~20 at.%). That means, claddings in SFR are to be situated with harsher environment than they used to

# 2. ANL HT9 Creep Correlation



face in LWR.

- HT9, which belongs to ferritic martensitic steels (FMS), is considered as one of the most primary candidates for cladding in SFR.
- Although HT9 has many advantages to be applied as cladding in SFR, high temperature creep has been considered as one of the most serious concerns.
- Argonne national laboratory (ANL) developed a HT9 creep correlation, and we are planning to use this correlation for a fuel performance analysis. Hence, it is necessary to confirm whether this correlation over-predicts or under-predicts compared to previously reported results.

| Thermal creep strain                                 | $\varepsilon_{\rm ts} = c_5 \exp\left(-\frac{1}{RT}\right)\sigma^{n_4} + c_6 \exp\left(-\frac{1}{RT}\right)\sigma^{n_5}$ |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $(\varepsilon_t), \%$                                | $\varepsilon_{\rm tt} = C_7 \exp\left(-\frac{Q_6}{RT}\right) \sigma^{n_6} t^{n_7}$                                       |  |  |  |
|                                                      | $C_1 = 13.4, C_2 = 8.43 \cdot 10^{-3}, C_3 = 4.08 \cdot 10^{18}, C_4 = 1.6 \cdot 10^{-6},$                               |  |  |  |
|                                                      | $C_5 = 1.17 \cdot 10^9$ , $C_6 = 8.33 \cdot 10^9$ , $C_7 = 9.53 \cdot 10^{21}$ , $Q_1 = 15,027$ ,                        |  |  |  |
|                                                      | $Q_2 = 26,451, Q_3 = 89,167, Q_4 = 83,142, Q_5 = 108,276, Q_6 = 282,700$                                                 |  |  |  |
|                                                      | $n_1 = 1, n_2 = 4, n_3 = 0.5, n_4 = 2, n_5 = 5, n_6 = 10, n_7 = 4$                                                       |  |  |  |
| Irradiation creep strain $(\varepsilon_{\rm I}), \%$ | $\varepsilon_{I} = (B_{0} + Aexp\left(-\frac{Q_{7}}{RT}\right)\varphi)\sigma^{n_{8}}$                                    |  |  |  |
|                                                      | $B_0 = 1.83 \cdot 10^{-4}$ , $A = 2.59 \cdot 10^{14}$ , $Q_7 = 73000$ , $n_8 = 1.3$                                      |  |  |  |
| $\sigma$ : Effective stress, MP                      | a $R: \text{Gas constant, } 1.987 \text{ cal/(K·mol)}$                                                                   |  |  |  |
| T: Temperature, K                                    | Q: Activation energy, cal/mol                                                                                            |  |  |  |
| <i>t</i> : Time, s                                   | $\varphi$ : Neutron fluence, $10^{22}$ n/cm <sup>2</sup>                                                                 |  |  |  |

- The correlation composed of two parts: thermal creep and irradiation creep.
- Thermal creep occurs due to thermal activation, and irradiation creep occurs due to the activation by neutron. Hence, thermal creep is more dominant at relative high temperature above 600 °C.

# **3. Validity Analysis**

### **Summary of previous results**

| Author                   | Reactor | Temperature, °C | Stress, MPa            | Fluence, $10^{22}$ n/cm <sup>2</sup> | Reference |
|--------------------------|---------|-----------------|------------------------|--------------------------------------|-----------|
| Toloczko et al.          | FFTF    | 495-500         | 13, 26, 52, 87,<br>121 | 25.5                                 | [1]       |
|                          |         | 550             | 13, 26, 52, 87         | 12.2                                 |           |
|                          |         | 605             | 4, 9, 13               | 12.3                                 |           |
| Paxton et al.            | EBRII   | 545             | 24, 48, 95             | 2                                    | [2, 3]    |
|                          |         | 560-565         | 13, 25, 47             | 2                                    |           |
|                          |         | 605             | 25, 47, 98             | 4                                    |           |
|                          |         | 625-635         | 13, 26, 47             | 4                                    |           |
| Chin                     | EBRII   | 432             | 55, 110, 165           | 1.7-10.2                             | [4]       |
|                          |         | 540             | 50                     | 10.7                                 | [5]       |
| Straalsund and<br>Gelles | EBRII   | 425             | 95                     | 0-10.8                               |           |
|                          |         | 430             | 48, 96, 141            | 16                                   |           |
|                          |         | 540             | 0-80                   | 10                                   |           |
|                          |         | 550             | 19, 46, 94             | 16                                   |           |
|                          |         | 590             | 48                     | 0-10.8                               |           |
|                          |         | 620             | 14, 23                 | 16                                   |           |
| Puigh and Wire           | EBRII   | 443             | 43, 65, 86             | 2.3                                  | [6]       |
|                          |         | 505             | 43, 65, 86             | 2.8                                  |           |
|                          |         | 572             | 43, 65, 86             | 2.3                                  |           |
| Puigh and<br>Garner      | FFTF    |                 | 52, 87                 | 10, 15, 23, 31                       | [7]       |
|                          |         | 414.5           | 121, 173               | 10, 15, 24, 32                       |           |
|                          |         |                 | 54, 86, 124, 175       | 2.4, 9.8, 15.6, 23.5, 31.4           |           |
|                          |         | 520             | 26, 50, 85             | 5.2                                  |           |
|                          |         | 600             | 12, 26, 61             | 7.7                                  |           |
| Puigh                    | FFTF    | 417             | 60, 100, 140,<br>200   | 2.7-10.0                             | [8]       |
|                          |         | 505             | 63, 105                | 3.2-10.9                             |           |
|                          |         | 520             | 60, 100, 140           | 10.6                                 |           |



#### **Comparison with in-pile creep data**



- The correlation under-predicts compared to the previous results.
- It may be due to the difference between in-reactor thermal creep and out-of-pile thermal creep.
  - Although there is some scattering, the correlation agrees with the previous results.
- The scattering may be due to that it is not easy to control experimental parameters such as temperature and fluence

#### **Comparison with out-of-pile creep data**





- For HT9 to be applied as a fuel cladding in SFR, it is necessary to predict creep behavior accurately.
- Validity of HT9 creep correlation developed from ANL was analyzed by comparing with previously reported results.
- It was found that the HT9 creep correlation from ANL is in agreement with the previously reported in-pile creep experimental results.

### References

1. Toloczko, M., et al. Comparison of Thermal Creep and Irradiation Creep of HT9 Pressurized Tubes at Test Temperatures from 490 °C to 605 °C. in Effects of Radiation on Materials: 20th International Symposium, ASTM International, 2001. 2. Paxton, M., B. Chin, and E. Gilbert, The in-reactor creep of selected ferritic, solid solution strengthened, and precipitation hardened alloys. Journal of Nuclear Materials, 1980. 95(1-2): p. 185-192.

3. Paxton, M., et al., Comparison of the in-reactor creep of selected ferritic, solid solution strengthend, and precipitation hardened commercial alloys. Journal of Nuclear Materials, 1979. 80(1): p. 144-151.

4. Chin, B. Ananalysis of the creep properties of a 12Cr-1 Mo-WV steel. in Proceedings of the topical conference on ferritic alloys for use in nuclear energy technologies. 1984.

#### Acknowledgement

5. Straalsund, J. and D. Gelles, Assessment of the performance potential of the martensitic alloy HT-9 for liquid-metal fastbreeder-reactor applications. Hanford Engineering Development Lab., Richland, WA (USA), 1983. 6. Puigh, R. and G. Wire, In-reactor creep behavior of selected ferritic alloys. Westinghouse Hanford Co., 1983. 7. Garner, F. and R. Puigh, Irradiation creep and swelling of the fusion heats of PCA, HT9 and 9Cr-1Mo irradiated to high neutron fluence. Journal of nuclear materials, 1991. 179: p. 577-580. 8. R. Puigh, In-reactor creep behavior of the fusion heats of HT9 and modified 9Cr-1Mo, Westinghouse Hanford Co., 1985

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021M2E2A1037869)