

Scanning Simulation Speed Improvement in Robotic Nuclear Decommissioning System

Wonmook Jeong*, Hyoseok Lim, Sungmoon Joo, Ikjune Kim and Jonghawn Lee
Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Korea

*Corresponding author: jwonmook@kaeri.re.kr

1. Introduction

There are two ways to obtain point cloud data: using a
physical scanner or using a scan model in a virtual
environment. This paper presents an efficient method for
a scanning simulation method using C++ or python.
Simulations generate synthetic point cloud data used to
train deep learning models for classifying reactor parts in
robotic nuclear decommissioning system. The purpose of
this study is to select an optimal algorithm for scanning
simulation.
This paper is organized as follows. Section 2 introduces

how our scan simulator works. Section 2.2 shows a
comparison of the two methods of converting meshes to
point clouds. Section 3 describes multiprocessing and
Section 4 describes numerical experiment environment.
Finally, Section 5 concludes the paper.

2. Simulator development

2.1 Simulator Overview

Simulators are built by applying a raycasting

mechanism by default. As shown in Fig. 1, one of the
intersections of the line segment connecting the two
points(red point – scanner position, green point – gazing
point) and the mesh (STL file) is converted into point
cloud data by extracting the first intersection.

Fig. 1 Intersection point line to mesh

2.2 Implementation Method (C++, Python)

To achieve optimal performance, we have implemented

the simulator in various methods and compared the
performance in terms of simulation speed.

2.2.1 C++ (VCGlib)

The Visualization and Computer Graphics Library

(VCG for short) is an open source portable C++ template
library for manipulating, processing, and displaying
using OpenGL of triangular and tetrahedral meshes [1].
A simulator written in C++ of the same concept was

implemented using VCGlib. A simulator was created

using the Find Intersection function, which is one of the
representative functions of VCGlib.

2.2.2 Python (Pycaster)

We have created a user-friendly simulator using Python.

The simulator is built using a library called 'Pycaster'
which contains the same functionality as VCGlib to find
intersections.

2.2.3 Python with binding (pybind11)

Pybind11 is a lightweight header-only library that

exposes C++ types in Python and vice versa, primarily
for generating Python bindings of existing C++ code [2].
Pybind11 is used for C++ scripts to take advantage of

Python's user-friendly environment and C++'s fastest
computational speed. Based on the runtime analysis
result (Fig. 4), the intersection function, which takes the
largest portion in runtime, was converted and applied
through pybind11.

3. Multiprocessing

The problem that always accompanies Python-based

scripts is that they are slower than C++, in general. The
same problem was observed in the simulator
implementation described above, and we applied
multiprocessing to improve speed.

3.1 Effects of Multiprocessing

 Python supports multiprocessing (since Python version
2.6.X), which can significantly shorten the runtime
required for iterative tasks.

Fig. 2 Runtime comparison to the number of CPUs using

(dotted line: not using multiprocessing)

We calculated the core efficiency (Eq. 1). The runtime

reduction rate is defined as how much of the runtime has
decreased compared to the previous step. Core growth is
defined as how many cores have increased compared to
the previous step. As the number of cores increases, the
efficiency decreases along the trend line in Fig. 3, which
means that the cost effectiveness decreases.

Transactions of the Korean Nuclear Society Virtual Autumn Meeting

October 21-22, 2021

 Eq. 1

Fig. 3 Core efficiency (calculated by Eq. 1)

3.2 Amdahl’s Law
As the number of cores used increases, the runtime can

decrease, as shown in Fig. 2. Runtime reduction follows
Amdahl's law [3].

 Eq. 2
where a is Amdahl’s ratio, and p is number of processor

Fig. 4 Scanning simulator partial runtime analysis

About 76% of simulators are capable of

multiprocessing as shown in Fig. 4. According to
Amdahl's Law(Eq. 2), the 8-core runtime
performance improvement is calculated to be
approximately 3x. The calculation results are in good
agreement with Fig. 4.

4. Experiment Environment

Numerical experiments were performed in a VMware

environment using 8GB RAM, M1 (8 core CPU),
Ubuntu 18.04 LTS.
We used a mesh model of a reactor part as a scanning

target(Fig. 5). The three implementations of the ray-
casting feature were tested.

Fig. 5 Reactor part model

5. Result

Fig. 6 shows an example of scan simulation. As shown

in Fig.7, pure C++ implementation performed the best
among the implementations, and the Pybind11
implementation showed similar performance. In the case
of Pycaster, since it is a code composed of pure Python,
the performance improvement by multiprocessing was
the greatest. The results are summarized in Table 1.

Fig. 6 Scanning result point cloud data (.ply)

Fig. 7 Runtime comparison

Table 1. Summary of runtime result (sec)

ACKNOWLEDGEMENT

This work was supported by the nuclear research and

development program through the National Research
Foundation of Korea, funded by the Ministry of Science
and ICT, Republic of Korea (Grant Code:
2017M2A8A5015146).

REFERENCES

[1] http://vcg.isti.cnr.it/vcglib/
[2] https://pybind11.readthedocs.io/en/stable/
[3] G. M. Amdahl. Validity of the Single-Processor Approach
to Achieving Large Scale Computing Capabilities. In AFIPS
Conference Proceedings, pages 483–485, 1967.

Transactions of the Korean Nuclear Society Virtual Autumn Meeting

October 21-22, 2021

