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Q Introduction

¢ Simulations generate synthetic point cloud data that is h
used to train deep learning models for classifying reactor
parts.

* One way to obtain point cloud data is to use a scan model
in a virtual environment.

¥ This study was conducted for the purpose of selecting an
optimal algorithm for improving the runtime up to real-

\_ time scanning. )

Original mesh data & Scanning data

@ Simulator Development
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¥ Simulators are commonly built by applying a ray-casting
mechanism.

¥ The ray-casting mechanism uses the functions of the
pycaster library and the VCG library as shown in the figure
below to find the intersection points of a mesh and a line
segment.

o /

Intersection point

Intersection Point by Ray-casting Method

4 N

F To achieve optimal performance, we have created a
simulator with scripts in various languages.

- Pure C++(VCG lib) : Using the Find Intersection
function, which is one of the functions of VCGlib.

- Pure Python(pycaster) : Using the Find Intersection
function, which is one of the functions of pycaster.

- Binded Python(pybind11) : Pybind11 is designed to take
advantage of Python's user-friendly environment and
C++'s fastest computational speed. Pybind11 allows
high-speed code written in C++ to work in Python.
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@ Conclusions

@ Multiprocessing

4 N

¥ The problem that always accompanies Python-based
scripts is that they are slower than C++.

¥ About 76% of simulators are capable of multiprocessing.

¥ According to Amdahl's Law, the using 8-core runtime
performance improvement is calculated to be
approximately 3x.
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¥ In almost all cases, pure C++ code performed the best,
and the results with Binded Python showed similar
performance.

- Pure C++ : 6~10x time Faster than pure python
- Binded Python : 5~9x time Faster than pure python

- Pure Python : About 3x time improvement by
multiprocessing
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