Scanning Simulation Speed Improvement in Robotic Nuclear
Decommissioning System

Wonmook Jeong*, Hyoseok Lim, Sungmoon Joo, lkjune Kim and Jonghawn Lee
Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Korea

*Corresponding author: jwonmook@kaeri.re.kr

Q Introduction

¢ Simulations generate synthetic point cloud data that is h
used to train deep learning models for classifying reactor
parts.

* One way to obtain point cloud data is to use a scan model
in a virtual environment.

¥ This study was conducted for the purpose of selecting an
optimal algorithm for improving the runtime up to real-

_ time scanning.)

Original mesh data & Scanning data

@ Simulator Development

4 N

¥ Simulators are commonly built by applying a ray-casting
mechanism.

¥ The ray-casting mechanism uses the functions of the
pycaster library and the VCG library as shown in the figure
below to find the intersection points of a mesh and a line
segment.

o /

Intersection point

Intersection Point by Ray-casting Method

4 N

F To achieve optimal performance, we have created a
simulator with scripts in various languages.

- Pure C++(VCG lib) : Using the Find Intersection
function, which is one of the functions of VCGlib.

- Pure Python(pycaster) : Using the Find Intersection
function, which is one of the functions of pycaster.

- Binded Python(pybind11) : Pybind11 is designed to take
advantage of Python's user-friendly environment and
C++'s fastest computational speed. Pybind11 allows
high-speed code written in C++ to work in Python.

/

@ Conclusions

@ Multiprocessing

4 N

¥ The problem that always accompanies Python-based
scripts is that they are slower than C++.

¥ About 76% of simulators are capable of multiprocessing.

¥ According to Amdahl's Law, the using 8-core runtime
performance improvement is calculated to be
approximately 3x.

o

Simulator Runtime AnaIYSiS (raycast 13203 points)

\ setROI

" 0.3062%

save_time
0.2496%

_
initializetime/-

5.9899%

spr2pnt
5%

raycasting time
76.0941%

create sphere time

/ 1.2591%

H initializetime m setROI makepcdtime ®creatsprtime ®save time

Simulator Runtime Analysis

M u |t| prOCESSi ng Ru ntime <6505/36907 points detected >

o m1 (default)

100 103.5sec

90
80

70

runtime (sec)

60

50

40

30

20
1 core 2 core 3 core 4 core 5 core 6 core 7 core 8 core 9 core 10 core

Multiprocessing Runtime per Core

¥ In almost all cases, pure C++ code performed the best,
and the results with Binded Python showed similar
performance.

- Pure C++ : 6~10x time Faster than pure python
- Binded Python : 5~9x time Faster than pure python

- Pure Python : About 3x time improvement by
multiprocessing

400

350

300

250

200

05
0 III

888888888

& - Ill 11

8736 points 218400 points 873600 points
m pure C++ m pybinding m pybinding 4 core pybinding 8 core

W pycaster W pycaster 4 core M pycaster 8 core

Computation Speed Comparison (sec)

