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1. Introduction 

 

As recent trend of pressurized water reactors (PWRs) 

has increased cycle length and undergone power uprates, 

CRUD induced power shift (CIPS), which is also known 

as axial offset anomaly (AOA), occurs in many 

commercial PWRs. In U.S, it has been reported 18 cases 

of AOA since 2004, and it has been observed at the OPR-

1000 reactor in Korea in 2015. CIPS is an axial power 

shift towards the bottom half of the core resulting from 

deposited corrosion product at upper part the core called 

CRUD and boron hold-up within the CRUD. By 

affecting axial power distribution, CIPS makes nuclear 

reactor core operation more difficult, decreasing 

shutdown margin. A reactor core which exceeds 

acceptable limits is required to reduce operation power 

or shutdown. Since that, early diagnostics of CIPS, and 

follow-up measures such as water chemistry 

management can reduce costs caused by AOA during the 

operation. This study has been carried out to predict 

CIPS occurrence in commercial PWR during operation 

by using machine learning (ML) technique. Developing 

a high-performance ML model requires huge amount of 

training data which is, in this study, nuclear reactor 

operation data with CIPS occurrence. However, it is 

challenging to obtain real operation data from nuclear 

reactors due to safety and security issues. To overcome 

the challenges, this study employs a nuclear core analysis 

code, RAST-K [1] to generate simulation data which is 

used to train ML model predicting CIPS occurrence. A 

CRUD model solving CRUD balance equation in a 

reactor coolant system (RCS) is used to simulate CRUD 

accumulation and following power shift (CIPS). The 

simulation data is used to train a ML model to predict 

CIPS. The feasibility of the AI-based CIPS prediction 

method is assessed in this study. 

 

2. AI-based CIPS prediction method 

 

In this section, the suggested AI-based CIPS 

prediction methodology is described. At first, prediction 

of CIPS by using ML algorithm is described, and 

framework of simulation-based data generation 

including simulation code description and CRUD model 

is presented.  

 

2.1 Prediction of CIPS 

 

During nuclear reactor operation, the corrosion 

products such as Ni, Fe, and Co formed in RCS are 

deposited on fuel rod cladding surface by subcooled 

nucleate boiling, resulting in chalk river undefined 

deposit (CRUD) accumulation with porous media. The 

porous structure provokes precipitation of ions dissolved 

in coolant such as boron and lithium. The boron hold-up 

within the CRUD leads to neutron flux depression at the 

upper part of the core, bringing axial power shift toward 

the bottom, called CIPS. With growing of CRUD from 

the beginning of cycle (BOC), the effect of CRUD on the 

axial power shape increases gradually during operation. 

Meanwhile, to detect the AOA occurrence, axial offset 

(AO) or axial shape index (ASI) is monitored. If the 

difference between the measured and design values are 

greater than 3 percent, it is diagnosed with AOA. The 

suggested method is developed to predict CIPS before 

the nuclear reactor operation violates the ASI limit with 

help of ML technique. Since ML model can deal with 

large and complex problem, it is expected that it can 

catch anomalies in nuclear reactor core operation caused 

by CRUD earlier than existing method by monitoring 

local power shape of all ICI signals and ex-core detector 

signals in real time. 

 

2.2 Simulation Code & CRUD Model 

 

In this study, ML models learn with simulation data 

due to challenges of obtaining massive labeled datasets 

from real nuclear reactor. To make the CIPS prediction 

method practically usable in operation system, it is 

necessary to close the gap between ‘real’ and ‘simulated’ 

dataset. A nuclear reactor analysis core, RAST-K [1], is 

employed to produce simulation datasets. It is a nodal 

diffusion code developed for in-core fuel management 

study, core design calculation, load follow calculation 

and transient analysis of PWRs. It uses multi-group 

neutron cross section data computed by a lattice physics 

code, STREAM [2], which adopts pin-based slowing 

down method (PSM) for resonance treatment to obtain 

accurate numerical solutions. RAST-K has been verified 

and validated with respect to the commercial PWRs 

including OPR-1000, APR-1400, Westinghouse 2-Loop 

(WH2L), and Westinghouse 3-Loop (WH3L) showing 

good agreement in nuclear core parameters such as ASI, 

CBC, and fuel assembly power distributions. In addition, 

RAST-K can calculate both in-core instrument (ICI) and 

ex-core detector signals which are used to train ML 

models. Meanwhile, RAST-K has capability to simulate 

CRUD accumulation during the operation by solving the 

CRUD balance equation within the RCS. The balance 

equation for time 
1' [0, ]b bt t t t−= −    is written as follow: 
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. 1( ') exp( ')reload reload

CRUD src CRUD b srcS t M t −= −  , (3) 

 

where ( ')CRUDC t  is CRUD mass concentration in RCS 

coolant, 
RCSM  is total mass of RCS coolant, RCS

CRUDS  is 

CRUD source from corrosion of RCS component walls,  
reload

CRUDS  is CRUD source from reloaded fuels,  
,CRUD iM  is 

mass of CRUD deposited at node i ,   is purification 

filter efficient, 
letdownM  is RCS letdown flow rate for 

purification, ,i bR  is average subcooled nucleate boiling 

rate at node i  during time ' [0, ]t t  , 
erosionK  is CRUD 

erosion rate and 
src  is CRUD source time constant from 

reloaded fuels.   

 

Given the CRUD mass deposited on cladding surface 

by solving Eq. (1) ~ (3), CRUD thickness (
CRUD ) is 

calculated as: 
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where 
cladR  is cladding outer radius, 

CRUD  is CRUD 

density, z  is node axial length, 
/fuel nodeN  is number of 

fuel rods in a node. 

 

The boron number density increase in CRUD during 

time ' [0, ]t t   (
BdN ) can be calculated with boron 

number density in borated water (
,D BN ) and CRUD 

volume increase (
CRUDdV ): 

 

 
,  ( )B D B CRUD CRUD thresholddN N dV  =    . (5) 

 

Since AOA is first observed in plants where CRUD 

deposits are believed to have built up to 20~30 micron 

[3], threshold CRUD thickness (
threshold ) for boron hold-

up in CRUD porous is introduced. 

To validate the CRUD accumulation model in ASI 

calculation, it is compared with measured ASI of the 

OPR-1000 reactor where AOA has beend observed. Fig. 

1 shows the ASI comparison between measurement and 

computed one by RAST-K. The computed ASI with the 

CRUD model is well follow the trend of measured ASI 

comparing to that without the CRUD model.  

 

 
Fig. 1. Comparison of ASI for OPR-1000 where AOA 

has been observed 

 

2.3 Generation of Train Datasets 

 

In this study, datasets are generated by simulation of 

the nuclear reactor analysis code, RAST-K. A data 

generation system in which RAST-K is embedded has 

been established [4]. An equilibrium core (Cycle 4) of 

OPR-1000 type reactor is used as base input model. 

Since it simulates deposit of CRUD on cladding surface 

during the operation, 500 days of depletion calculation 

with 52 burnup steps is performed to produce every 

single core model data, and full power (100%) operation 

is assumed for depletion.  

To make ML model practically usable in NPP, it 

should cover various core conditions being confronted 

with during the operation. Thus, train datasets are 

generated with random numbers to perturbate input 

parameters relating to operation condition and CRUD 

accumulation rate. Sampling ranges are set to make the 

generated core model to be occurrable. The data 

generation procedure is as follow:  

 

1) For every burnup step, core power is determined 

by randomly sampling a number from 99.0 to 

101 .0 with uniform probability. 

2) Input parameters which determine CRUD 

accumulation rate and boron hold-up are 

determined. The input parameters are sampled 

with normal distribution as Table 1.  

3) A core input model constructed at 1) and 2) is 

solved using RAST-K to compute in-core and ex-

core detector signals 

4) Each burnup step’s data of the core model is 

labeled by comparing ASI computed at 3) with 

reference core model (HFP with no CRUD 

accumulation). If the ASI difference is larger than 

2%, the data burnup point is labeled as CIPS 

occurrence. 

5) A procedure from 1) to 4) is repeated. 

 

In generation of an input model, core power is 

perturbed for ±1% from full power (100%) operation 

condition to consider 2% of uncertainty to detect core 

thermal power during operation. To avoid a core model 
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out of normal operation range, sampling range for CRUD 

accumulation rate is set to be near the nominal values 

which is used to model the OPR-1000 core model where 

AOA has been observed. Input parameters which affect 

CRUD accumulation and boron hold-up rate are sampled 

with uniform distribution. The parameters are CRUD 

threshold thickness for boron hold-up, CRUD source in 

RCS coolant, CRUD in reloaded fuel, and CRUD release 

constant from reloaded fuel. Because this study is in 

purpose of developing ML predicting and diagnosing 

CIPS occurrence earlier than current method, criterion 

for labelling CIPS occurrence is set to be 2%. Once ASI 

difference is greater than 2% at a certain burnup step, the 

core model is labeled as CIPS occurred and snap data 

prior to the burnup step are labeled as ‘day to CIPS 

occurrence’. The reference core model to compare ASI 

is hot full power (HFP) condition without CRUD.  

 

Table I: Sampled input parameters and sampling 

range for uniform distribution 

Parameter Nominal Lower Upper 

Core power rate 

[%] 
100 99 101 

Threshold thickness 

[micron] 
25 20 30 

Source in RCS 

[kg/sec] 
1.3E-7 0.3E-7 4.3E-7 

CRUD in reloaded 

fuel 

[kg] 

6.5 4.0 11.0 

CRUD release time 

constant 

[1/sec] 

2.0E-7 1.0E-7 6.0E-7 

 

 
Fig. 2. Minimum and maximum envelope of ASI over 

52,373 core models with CRUD model 

 

In total, 52,373 core models with randomly selected 

input parameters are generated and simulated with 52 

burnup steps. In Linux cluster system with Intel(R) 

Xeon(R) CPU E5-2680 v4 @ 2.40GHz, it takes 80 mins 

to calculate a single core model. Out of the generated 

core models, 27,906 core models are normal (no CIPS 

occurred) and 24,467 core models are abnormal with 

CIPS occurrence. Fig.2 shows minimum envelope and 

maximum envelope of ASI over 52,373 core models.  

 

3. Training ML model and result 

 

3.1 Training ML model 

 

Since the train datasets are labeled in data generation 

procedure and it is used in training ML, it is supervised 

learning. With given label of data, CIPS or not, the ML 

problem is classification where a class label (Y) is 

predicted for a given input data (X). The CSV file format 

is used for train datasets and Fig. 3 shows an example of 

train dataset. First column is a label, referring ‘day to 

CIPS occurrence’ or not, and rest of data in row are 

control rods positions, ICI signals, and ex-core detector 

signals being used for input data of ML model. Each row 

represents a snap data of single burnup step.  

 

 
Fig. 3. Example of train datasets to train ML model 

 

Before training, it is preprocessed that labelling is 

converted to binary number, 1 (CIPS occurrence within 

coverage days) and 0 (no CIPS within coverage days), 

according to the number of days to predict. Hence, the 

trained ML model can provide judgement if CIPS will 

occur within the coverage days.  The coverage days are 

10, 30, 60, 90, and 150 days. Data is normalized such that 

it has 0 mean and unit variance. The dataset is divided 

into three part to avoid overfitting and model selection 

bias called training set, validation set, and testing set, 

taking 60%, 20%, and 20% of dataset, respectively.  

Three types of ML models such as Random Forest (RF) 

[5], XGBoost (XGB) [6], and Light GBM (LGBM) [7] 

are selected for binary classification of CIPS prediction. 

Hyper parameters of the ML models are tuned by using 

GridSearch method. To make it robust, the three trained 

ML models are combined with soft-voting method called 

an ensemble model. 

 

3.2 CIPS prediction results 

 

The binary classification result of the ensemble 

(combined RF, XGB, LGBM) model on testing dataset 

is shown in Table Ⅱ including true positive (TP), false 

negative (FN), false positive (FP), and true negative (TN) 

rates. ‘Positive or negative’ represents ML model’s 

prediction and ‘true or false’ represents right and wrong 

of ML model’s decision.  
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Table Ⅱ: Ensemble model’s prediction results for  

CIPS occurrence within coverage days 

coverage 

days 
TN FP 

FN 
TP 

10 days 0.9860 0.0002 0.0006 0.0133 

30 days 0.9631 0.0054 0.0058 0.0256 

60 days 0.9092 0.0082 0.0096 0.0730 

90 days 0.8672 0.0117 0.0129 0.1081 

150 days 0.8102 0.0174 0.0257 0.1467 

 

Performance of the trained ML model is tested by 

using performance metrics such as accuracy, precision 

(also known as positive predictive value), and recall (also 

called as sensitivity). The performance metrics are 

defined as follows:  

 
 TP TN

accuracy
TP TN FP FN

+
=

+ + +

  (6) 

 

 TP
precision

TP FP
=

+

  (7) 

 

 TP
recall

TP FN
=

+

  (8) 

 

Fig. 4 shows performance metrics of the ensemble 

model on predicting CIPS occurrence. Given testing 

datasets, it predicts CIPS occurrence with high accuracy 

over 95%. However, precision and recall scores, which 

are ratio of correctly predicted positive data to all data 

predicted as positive and all actual positive data, are 

lower than accuracy in all cases. This is because data 

label is imbalance. In train dataset, the fraction of 

positive (CIPS occurred) data (TP+FN) is only 1.39% in 

case where it concerns 10 days for CIPS occurrence. 

Nevertheless, precision and recall also greater than 80% 

in all cases. Furthermore, in case where it predicts CIPS 

occurrence within 10 days, precision and recall score is 

over 95%. It assures that ML model can recognize CIPS 

in advance to current method monitoring ASI by learning 

patterns of power distribution stemming from CRUD 

accumulation.  

 

 
Fig. 4. Performance metrics of the ensemble model on 

predicting CIPS according to the coverage days 

 

 

3. Conclusions 

 

In this study, feasibility of AI-based CIPS prediction 

method has been assessed. Simulation-based dataset is 

generated by reactor core analysis code, RAST-K. Three 

types of ML models such as RF, XGB, and LGBM are 

trained. And then, an ensemble model which combines 

the three models is established by soft-voting method. 

The CIPS prediction results shows high accuracy score 

greater than 95% and high precision and recall scores 

greater than 80%. However, there is limitation with 

imbalanced dataset. The ratio of CIPS occurrence data is 

small if it concerns short-term future such as 10 days. 

Future work will generate more CIPS datasets to balance 

the normal and CIPS dataset even for short-term 

prediction. Also, unlike to this study which trains ML 

model with ‘snap’ data of a burnup step, future study will 

train ML model with ‘time series’ data for ML model to 

learn effect of CRUD on power distributions over time 

progress. 
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