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Topic Introduction 

 Development of clean energy system technology 
• Without pollutant & supply of electricity stays constant the day 

• Distributed power  high inherent safety 

 

 Fast Spectrum Molten Salt Reactor (FS-MSR) + Liquid Air Energy Storage System (LAES) 
• FS-MSR is new generation reactor which have long life time(50years) without online-refueling  

• Target FS-MSR is 100MWth power 

• LAES has large energy storage capacity 

• LAES collects carbon dioxide and fine dust during energy conversion and supplies clean air. 
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Topic Introduction 

 Passive residual heat removal system(PRHRS) for Fast-Spectrum Molten Salt 
Reactor(FS-MSR). 

• RVACS: Reactor Vessel Auxiliary Cooling System 

• Passive safety system which air cooled by natural circulation 

• Prevent the core temperature increasing after reactor shutdown. 

 

 Find out the feasibility of RVACS 
• Simple evaluated by MATLAB calculation 

• Optimizing design parameters for 100MWth FS-MSR 
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Background Study -core 
 Fuel efficiency : online-refueling problem 
 Low waste production: fast neutron < thermal neutron  

 
 
 
 
 
 Chloride based salt 

• Moderator effect: Fluoride based salt > Chloride based salt 
• Viscosity: Fluoride based salt > Chloride based slat  high power density by pump 
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Fig2. U-238 reaction in Fast reactor Molten salt Viscosity (kg/m*s) 
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Background Study -core 
 Target reactor core design parameters 

• Eutectic point : mole fraction 54% 
• Fuel salt: 46KCl-54UCl3 

• Cl enrichment: 99 a/o  
• U235 enrichment: 19.75 w/o 
• Core temperature : 650℃ 
• Core diameter(height): 218cm 
• Initial heavy metal inventory: 35,576kg 
• Initial excess reactivity: 6608 ± 15 pcm 

 
 Helium bubbling  remove noble metal 

 Off-gas system  gaseous fission products 
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Fig2. Reactor core design 
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Background Study -ESS 
 Electricity consumption rate by hour in july 

• 34.7% higher at noon to midnight  need a energy storage 

 
 
 
 
 
 
 ESS type: Liquid air energy storage (LAES) 

• LAES should have a capacity to store at least 14.8% of power generation 
• 4.44MWe/53.28MWh capacity energy storage system is needed. 
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Fig3. power consumption(July, 2020) 
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Background Study -ESS 
 A supercritical CO2 power conversion system applied 

• High temperature Brayton cycle, high efficiency than rankine cycle ( < 5%) 
• Carbon dioxide capture mechanism 
• High density fluid make system simplify 
• Propose system optimum turbomachinery speed is 10,000RPM, 40cm, type is radial multi stage. 

 
 Thermal energy storage (TES) to store heat transferred without temperature decrease 

• Control the reactivity (temperature control) 
• Hot & Cold insulated tank 
• ex) Crescent Dunes (USA), Andasol (Spain), Aurora (Australi) 
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Fig4. sCO2 optimum 
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Background Study -ESS 
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Background Study -RVACS 
 There are no previous study about RVACS application for FS-MSR. 

• Direct reactor auxiliary cooling system(DRACS), Primary reactor auxiliary cooling system(PRACS) exists 

• The RVACS heat removal capacity was investigated for similar types of reactor  

• The existing models were compared, and satisfactory heat removal criteria were determined 
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LOHS- Loss of heat sink 
UHS- Ultimate heat sink 

Fig6. Heat removal path 

 IRACS fails completely, RVACS is able to remove 
shutdown heat as a fully passive system of air convection. 
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Background Study - RVACS 
 PRISM reactor has RVACS that heat removal capacity was 0.7% of full power using the air. Also, SAFR 

reactor has 0.6%  heat removal capacity and Phenix reactor has 0.7%. 

 These reactors have different characteristics from FS-MSR, because neutron leakage rate and temperature 
distribution are totally different. However these reactor was designed heat removal capacity is about 
0.6~0.7 % of full power. Therefore, it is applicable if the target heat removal of FS-MSR satisfies under 0.6% 
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Reactor Power 
(MWth) Coolant RVACS method Heat remove 

(% full power) mechanism 

PRISM 840 Sodium RVACS with air 0.7 Natural 

SAFR 900 Sodium RVACS with air 0.6 Natural 

IMSR 400 Molten Salt RVACS with Nitrogen unknown Natural 

Phenix 840 Sodium RVACS with water 0.7 Forced 

CLEAR-I 45 Lead RVACS with air tubes 0.2 Natural 

Table3. RVACS application reactor features [3] 
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Research Question 
 
 Find out the feasibility of Reactor Vessel Auxiliary Cooling System (RVACS) 

• The exist RVACS’s target feature ability is 0.2 ~ 0.7% 

• RVACS target for FS-MSR is remove 0.6% of full power (600kWth) 

 Optimizing design parameters for our target reactor 

• CV outer wall temperature affects heat removal ability 

• Total heat removal capacity 

• Stack height 

• Air path thickness 
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RVACS test methods 
 Using MATLAB code calculation (natural circulation) 

• Simplified geometry (overflow x) 
• Considering : pressure drop, Convection & Radiation heat transfer 
• Changing values: Air patch thickness, mass flow rate 
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CV 

Air separator 

Hot air 
riser 

Cold air 
downcomer Design parameter value 

Air inlet Temperature 50 ℃ 

CV temperature 600 ℃ 

CV diameter 3 m 

Air path thickness 3 – 7 cm 

Air mass flow rate 1 – 3 kg/s 

Table1. RVACS design parameter Fig7. RVACS cross section Fig8. RVACS side view drawing 
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RVACS test results 
 Target of heat removal capacity is 0.6% of the full power. 

•  100MWth reactor using, so 600kWth decay heat removal capacity design 
• Case3 is optimization design (stack height is acceptable( <15m) and high heat removal) 
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Case Case 1 Case 2 Case 3 Case 4 

Air path thickness 3cm 3.5cm 4cm 4.5cm 

Air mass flow rate 2kg/s 2.5kg/s 3kg/s 3kg/s 

Stack height 12.4m 13.2m 14.0m 10.5m 

Heat remove 552.0kW 588.0kW 611.0kW 560.0kW 

Air outlet 
temperature 317.3℃ 278.5℃ 248.4℃ 232.1℃ 

Air heat transfer 
coefficient 27.6W/m2K 27.7W/m2K 27.6W/m2K 24.4W/m2K 

Table2. Code calculation results 

Fig9. Heat removal rate Fig10. Stack height 
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RVACS test results 
 The percent of convection decay heat removal is 55%. 
 If containment vessel wall temperature increase 

• Heat removal capacity is increase. 
• Necessary stack height is decrease. 
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Fig11. The ratio of convection to radiation heat removal  
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Fig12. Heat removal Fig13. Stack height 
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RVACS test results 
 Evaluate the applicability to higher reactor power(200, 300MWth) 

• Air path thickness is 4 cm fixed 
• CV diameter, stack height are variables 

 Increase CV diameter is essential to improve RVACS performance 
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Limitation of Study & Future work 
 This is preliminary conceptual study about RVACS application for FS-MSR 

• There many assumptions (especially concrete silo temperature was unapplied) 

• It is difficult to obtain the CV outer wall temperature distribution (viscosity, heat conductivity coefficient) 

• The placement of Internal Heat Exchanger(IHX) and internal structure of reactor vessel also need to considered 

 

 Ar41 is produced from irradiation of air due to neutron leakage 
• Looking for a solution to prevent air pollution 

• Closed circuit geometry (valve or damper) 

• Compare heat loss in normal operation and mechanical operation 
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Conclusion 
 Combination system 

• Fast spectrum Molten salt reactor 

• TES + LAES + sCO2 power conversion 

• RVACS, residual heat removal 

 The feasibility of RVACS evaluation result is enough to decay heat removal after 100MWth reactor 
shutdown. 

 

 Optimized design for 611kWth decay heat removal using RVACS 
• Air path thickness is 4cm, air mass flow rate is 3kg/s 

• The required stack height is 14m 

• Air heat transfer coefficient is 27.6 W/m2 K 
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