KNS Autumn Meeting,

A Conceptual Study of a system combines FS-MSR and ESS

Jaejin Choi

Department of Nuclear Quantum Engineering Korea Advanced Institute of Science and Technology

October 21, 2021

- Topic introduction
- Study background
- RVACS test method & results
- Future work
- Conclusion

Topic Introduction

Development of clean energy system technology

- Without pollutant & supply of electricity stays constant the day
- Distributed power → high inherent safety

Fast Spectrum Molten Salt Reactor (FS-MSR) + Liquid Air Energy Storage System (LAES)

- FS-MSR is new generation reactor which have long life time(50years) without online-refueling
- Target FS-MSR is 100MW_{th} power
- LAES has large energy storage capacity
- LAES collects carbon dioxide and fine dust during energy conversion and supplies clean air.

Nuclear Energy Conversion & Electrification Laboratory

Nuclear Energy Conversion & Electrification Laboratory

Find out the feasibility of RVACS

Topic Introduction

Reactor(FS-MSR).

 \bullet

- Simple evaluated by MATLAB calculation
- Optimizing design parameters for 100MW_{th} FS-MSR

RVACS: Reactor Vessel Auxiliary Cooling System

Passive safety system which air cooled by natural circulation

• Prevent the core temperature increasing after reactor shutdown.

Passive residual heat removal system(PRHRS) for Fast-Spectrum Molten Salt

Background Study -core

- Fuel efficiency : online-refueling problem
- Low waste production: fast neutron < thermal neutron</p>

 $_{92}U^{238} + _{0}n^{1} \longrightarrow _{92}U^{239} \longrightarrow _{93}Np^{239}$ 94Pu²³⁹ Uranium-238 Neutron Uranium Neptunium Plutonium-239 (Natural) (Fast) (Fissile isotope) $_{94}Pu^{239} + _{0}n^{1} \rightarrow _{94}Pu^{240} \rightarrow _{40}Zr^{103} + _{54}Xe^{134} + 3_{0}n^{1} + 207.1MeV$ Plutonium Neutron Plutonium Zirconium Xenon Neutrons Energy/atom (Unstable) (Fast) (Synthetic) (Thermal)

Fig2. U-238 reaction in Fast reactor

- Chloride based salt
 - Moderator effect: Fluoride based salt > Chloride based salt
 - Viscosity: Fluoride based salt > Chloride based slat → high power density by pump

Molten salt	Viscosity (kg/m*s)
LiF-NaF-KF (46.5-11.5-42)	6.3e-3
LiF-NaF-ZrF ₄ (26-37-37)	16.6e-3
LiCl-KCl (59.5-40.5)	1.8e-3
NaCl-KCl-MgCl ₂ (30-20-50)	2.1e-3

Background Study -core

- Target reactor core design parameters
 - Eutectic point : mole fraction 54%
 - Fuel salt: 46KCI-54UCl₃
 - Cl enrichment: 99 a/o
 - U235 enrichment: 19.75 w/o
 - Core temperature : 650° C
 - Core diameter(height): 218cm
 - Initial heavy metal inventory: 35,576kg
 - Initial excess reactivity: 6608 ± 15 pcm
- Helium bubbling
 → remove noble metal
- Off-gas system → gaseous fission products

Background Study -ESS

- Electricity consumption rate by hour in july
 - 34.7% higher at noon to midnight → need a energy storage

- ESS type: Liquid air energy storage (LAES)
 - LAES should have a capacity to store at least 14.8% of power generation
 - 4.44MWe/53.28MWh capacity energy storage system is needed.

Background Study -ESS

A supercritical CO₂ power conversion system applied

- High temperature Brayton cycle, high efficiency than rankine cycle (< 5%)
- Carbon dioxide capture mechanism
- High density fluid make system simplify
- Propose system optimum turbomachinery speed is 10,000RPM, 40cm, type is radial multi stage.
- Thermal energy storage (TES) to store heat transferred without temperature decrease
 - Control the reactivity (temperature control)
 - Hot & Cold insulated tank
 - ex) Crescent Dunes (USA), Andasol (Spain), Aurora (Australi)

Background Study - ESS

Fig5. Combines System

Background Study - RVACS

There are no previous study about RVACS application for FS-MSR.

- Direct reactor auxiliary cooling system(DRACS), Primary reactor auxiliary cooling system(PRACS) exists
- The RVACS heat removal capacity was investigated for similar types of reactor
- The existing models were compared, and satisfactory heat removal criteria were determined

Background Study - RVACS

- PRISM reactor has RVACS that heat removal capacity was 0.7% of full power using the air. Also, SAFR reactor has 0.6% heat removal capacity and Phenix reactor has 0.7%.
- These reactors have different characteristics from FS-MSR, because neutron leakage rate and temperature distribution are totally different. However these reactor was designed heat removal capacity is about 0.6~0.7 % of full power. Therefore, it is applicable if the target heat removal of FS-MSR satisfies under 0.6%

PRISM 8	40 Sod	um RVACS wi	th air 0.7	Natural
SAFR 9	00 Sod	um RVACS wi	th air 0.6	Natural
IMSR 4	00 Molte	n Salt RVACS with I	Nitrogen unknow	n Natural
Phenix 8	40 Sod	um RVACS with	water 0.7	Forced
CLEAR-I 4	15 Le	ad RVACS with a	air tubes 0.2	Natural

Table3. RVACS application reactor features ^[3]

Find out the feasibility of Reactor Vessel Auxiliary Cooling System (RVACS)

- The exist RVACS's target feature ability is 0.2 ~ 0.7%
- RVACS target for FS-MSR is remove 0.6% of full power (600kW_{th})

Optimizing design parameters for our target reactor

- CV outer wall temperature affects heat removal ability
- Total heat removal capacity
- Stack height
- Air path thickness

RVACS test methods

RVACS test results

- Target of heat removal capacity is 0.6% of the full power.
 - 100MW_{th} reactor using, so 600kW_{th} decay heat removal capacity design
 - Case3 is optimization design (stack height is acceptable(<15m) and high heat removal)

Table2. Code calculation results

RVACS test results

- The percent of convection decay heat removal is 55%.
- If containment vessel wall temperature increase
 - Heat removal capacity is increase.
 - Necessary stack height is decrease.

Fig11. The ratio of convection to radiation heat removal

RVACS test results

- Evaluate the applicability to higher reactor power(200, 300MW_{th})
 - Air path thickness is 4 cm fixed
 - CV diameter, stack height are variables
- Increase CV diameter is essential to improve RVACS performance

Limitation of Study & Future work

- This is preliminary conceptual study about RVACS application for FS-MSR
 - There many assumptions (especially concrete silo temperature was unapplied)
 - It is difficult to obtain the CV outer wall temperature distribution (viscosity, heat conductivity coefficient)
 - The placement of Internal Heat Exchanger(IHX) and internal structure of reactor vessel also need to considered
- Ar41 is produced from irradiation of air due to neutron leakage
 - Looking for a solution to prevent air pollution
 - Closed circuit geometry (valve or damper)
 - Compare heat loss in normal operation and mechanical operation

Conclusion

Combination system

- Fast spectrum Molten salt reactor
- TES + LAES + sCO₂ power conversion
- RVACS, residual heat removal
- The feasibility of RVACS evaluation result is enough to decay heat removal after 100MWth reactor shutdown.
- Optimized design for 611kW_{th} decay heat removal using RVACS
 - Air path thickness is 4cm, air mass flow rate is 3kg/s
 - The required stack height is 14m
 - Air heat transfer coefficient is 27.6 W/m² K

References

General Electric, PRISM, Preliminary Safety Information Document, prepared for U.S Department of Energy Under Contract No.DE-AC03085NE37937, December. 1987. Volume 2

CHENG, Lap-Yan. Phenomena Important in Liquid Metal Reactor Simulations. Brookhaven National Lab.(BNL), Upton, NY (United States), 2018.

LISOWSKI, Darius, et al. Technical Letter Report: An Overview of Non-LWR Vessel Cooling Systems for Passive Decay Heat Removal. 2021.

BOARDMAN, C. E.; HUNSBEDT, A. Performance of ALMR passive decay heat removal system. 1991.

Eoh, Jae-Hyuk, et al. "Feasibility study of a passive DHR system with heat transfer enhancement mechanism in a lead-cooled fast reactor." *Nuclear technology* 160.2 (2007): 216-232.

HUNSBEDT, A. Experiments and analyses in support of the US ALMR thermal-hydraulic design. 1993.

Thank you