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1. Introduction 

 

One of the Design Basis Events(DBE) of pool-type 

Sodium-cooled Fast Reactor (SFR) is “Pipe Break” and 

it is more precisely the primary pump discharge pipe 

connected to the inlet plenum where the core inlet starts. 

Unlike the LWR flow piping, the system is under 

atmospheric pressure and thus there is very little chance 

of guillotine break. However, for conservatism, the 

safety analysis assumes the total break of the discharge 

pipe and the coolant flows out to the cold pool.  

In the case of pipe break accident, the appropriate flow 

path for natural circulation inside the pool cannot be set 

and due to leakage point and eventually the coolant 

flow rate cannot be developed enough to remove the 

core decay heat. Therefore, it must be addressed during 

the safety analysis with the consideration of various 

conditions. 

In Korea Atomic Energy Research Institute (KAERI), 

there is a large-scale integral effect test facility to 

support the SFR development, namely the STELLA-2 

facility established under the Sodium Integral Effect 

Test Loop for Safety Simulation and Assessment 

(STELLA) program[1] and it is capable of simulating 

the Pipe Break Accident. The facility has a dedicated 

sub-system consisting of a very special valve and flow 

path to simulate the Pipe Break.  

In this study, various transient behavior under pipe 

break events with diverse decay heat removing 

combinations were analyzed using MARS-LMR. The 

scope of this analysis bounds within the preliminary 

code calculation results. The comparison with the 

experiment data and verification will be continued next 

year. 

 

2. STELLA-2 Facility 

 

The STELLA-2 is a down-scaled test facility to verify 

the performance of DHRS of the reference reactor. At 

the same time, the experiment database is used for 

V&V of safety analysis code[2,3].  

The STELLA-2 includes all the major components of 

the reference reactor except the nuclear fuel core, the 

steam generator, and the mechanical pump. Instead, the 

electric core simulator[4], the straight tube-type sodium 

to air heat exchanger and the EMP replaces each 

component. In the STELLA-2, there are four lines of 

DHRS. Two loops are for the passive heat exchanger 

and the other two loops are for the active heat 

exchanger. All four heat exchangers are of same 

capacity.  

The facility was designed to conserve the characteristic 

and transient behavior of the reference reactor and it 

was evaluated at several stages using various means 

and tools including CFD and system code.  

 

Fig. 1 STELLA-2 Facility Layout 

 

Fig. 2 STELLA-2 Installation and Control System 

3. MARS-LMR Analysis 

 

3.1 Pipe Break Accident  

 

The various conditions for the pipe break events are 

listed in Table 1 for STELLA-2 facility. Based on this 

test matrix the experiments are going to be conducted 

and will be compared with the preliminary analysis 

result.  

For the MARS-LMR analysis, the event progress with 

time is as follows.  

 

1. Pipe break valve open:  4.47s 

2. Pump trip:  4.47s 

3. UHX blower off: 4.47s 

4. Rx trip: 5.81s 

5. DHRS starts to operate: 8.26s 
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6. (1) 1 PDHRS + 1 ADHRS working 

(2) 2 PDHRS + 2 ADHRS working 

(3) 1 PDHRS + 2 ADHRS working 

(4) 2 PDHRS + 1 ADHRS working 

 

The time is set to satisfy the time scale ratio between 

the reference reactor and the STELLA-2. Therefore, the 

assumption of the event start time in real scale is 10sec 

and this corresponds to 4.47sec in STELLA-2.  

 

Table 1 STELLA-2 Pipe Break Test Matrix 

PHTS 

Pump 

Discharge 

Pipe Break 

- Rx Trip 

- with LOOP 

- 1 line Break 

- IHTS Na is not 

considered 

- PHTS pump 1&2 stops 

- Break Simulation Valve On 

- IHTS pump 1&2 stops 

- DHRS working condition:  

· 2 passive + 2 active  

- Rx Trip 

- with LOOP 

- 1 line Break 

- IHTS Na is 

considered 

- IHTS sodium inventory 

consideration:  

· SG F/W drayout simulation 

using UHX blower 

PHTS 

Pump 

Discharge 

Pipe Break 

+ DHRS 1 

loop fail 

- Rx Trip 

- with LOOP 

- 1 line Break 

- IHTS Na is not 

considered 

- PHTS pump 1&2 stops 

- Break Simulation Valve On 

- IHTS pump 1&2 stops 

- DHRS working condition:  

· 2 passive + 1 active 

· 1 passive + 2 active 

- Rx Trip 

- with LOOP 

- 1 line Break 

- IHTS Na is 

considered 

- IHTS sodium inventory 

consideration:  

· SG F/W drayout simulation 

using UHX blower 

PHTS 

Pump 

Discharge 

Pipe Break 

+ DHRS 2 

loops fail 

- Rx Trip 

- with LOOP 

- 1 line Break 

- IHTS Na is not 

considered 

- PHTS pump 1&2 stops 

- Break Simulation Valve On 

- IHTS pump 1&2 stops 

- DHRS working condition:  

· 2 passive 

· 2 active 

· 1 passive + 1 active 

- Rx Trip 

- with LOOP 

- 1 line Break 

- IHTS Na is 

considered 

- IHTS sodium inventory 

consideration:  

· SG F/W drayout simulation 

using UHX blower 

 

3.2 Node layout and Assumptions 

 

The node layout is shown in Fig. 3. Based on the heat 

balance of the reference reactor design, the steady-state 

point was set to match the temperature distribution 

inside the pool and the transient started with the 

opening of the valve. The primary and intermediate 

loop pumps stop and the core heater starts to follow the 

decay heat curve.  

 

Fig. 3 Node Diagram 

4. Results and Discussion 

 

The representative case result of 1 passive + 1 active 

DHRS working condition is described as follows. This 

case is selected because this condition is the least heat 

removing condition and is the worst case for the core. 

The other cases are not included in this paper for it 

showed similar trend with small difference in heat 

removing capacity. 

The pipe break occurs at the Pump Discharge line 4 and 

connects to the cold pool directly. The calculation time 

of analysis was upto 10,000 seconds. 

 

4.1 Flowrate Trend 

 

 PHTS Pump Inlet 1: 1.25kg/s (0.0s) → 0.053kg/s 

(200s, min flowrate at early stage) → 0.097kg/s 

(540s, max flowrate at early stage) → continuous 

decrease → small back flow starts at 890s → 

1,380s flow recovers direction and increase → 

0.29kg/s(3,190s, max flowrate and decrease) → 

0.1kg/s(10,000s) 

 PHTS Pump Inlet 2: 1.25kg/s (0.0s) → 0.043kg/s 

(190s, min flowrate at early stage) → 0.085kg/s 

(550s, max flowrate at early stage) → continuous 

decrease → small back flow starts at 880s → 

1,280s flow recovers direction and increase → 

0.29kg/s(3,160s, max flowrate and decrease) → 

0.1kg/s(10,000s) 

 Pump Discharge 1&2: the trend is same as the 

PHTS Pump Inlet 1 at the same timeline 

 Pump Discharge 3: most of sodium back flow from 

Discharge line 4 goes through Discharge line 3 and 

to the Inlet Plenum(Core Inlet). The trend is 

symmetrical to Discharge line 4 (opposite direction 

and same flowrate).  

 Pump Discharge 4: flowrate decreases rapidly after 

19s → back flow from cold pool to inlet plenum 

starts at 23s → -0.64kg/s (44s max back flowrate 

at early stage) → -0.45kg/s (320s, min back 

flowrate at early stage) → -0.68kg/s (max back 

flowrate) → 1,890s flow recovers direction → 

0.11kg/s (3,180s, max flowrate) → 0.00023kg/s 

(10,000s) 
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
 
Inlet Plenum to Cold Pool line: the trend is similar 

to that of Pump Discharge line 4 but with different 

flowrate. 
 


 
Through Core:

 
flowrate decrease after 5s →

 
1.13kg/s (290s, min flowrate at early stage) →

 
1.69kg/s (640s, max flowrate) →

 
0.5kg/s (10,000s)

 

 
Passive DHX shell side:

 
sudden increase after 140s 

and the max flowrate(0.38kg/s) at 250s →
 
0.25kg/s 

(10,000s)
 


 
Active DHX shell side:

 
sudden increase after 110s 

and the max flowrate(0.41kg/s) at 140s →
 
0.22kg/s 

(10,000s)
 


 
AHX tube side:

 
starts to increase after 30s and 

0.5kg/s of max flowrate at 210s → slowly 

decreases and 0.37kg/s at 10,000s 

 FHX tube side:  starts to increase after 30s and 

0.51kg/s of max flowrate at 120s → slowly 

decreases and 0.32kg/s at 10,000s 

 

Fig. 4 Core and Pump Inlet Sodium Flowrate  

 

Fig. 5 Pump Discharge Line Sodium Flowrate 

 

Fig. 6 DHX Shell-side Sodium Flowrate 

 

Fig. 7 AHX Tube-side Sodium Flowrate 

 

Fig. 8 FHX Tube-side Sodium Flowrate 

4.2 Temperature Trend 

 

 In early stage, the natural circulation flow through 

the core develops sufficiently to decrease the core 

outlet temperature  → the flowrate reaches the max 

at 640s and slowly decreases → the min core outlet 

temperature 443℃ at 680s → temperature slowly 

increases and reaches 506℃ at 10,000s 
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 Core inlet temperature starts to increase after 

3,000s and reaches 430℃ at 10,000s 

 AHX tube-side inlet sodium temperature maintains 

497℃ upto 200s and starts to decrease to 238℃ at 

10,000s. AHX tube-side outlet sodium temperature 

rapidly decreases until 140s to 304℃ and then 

increases to 360℃ at 290s. It reaches 165℃ at 

10,000s 

 FHX tube-side inlet sodium temperature maintains 

499℃ upto 140s and starts to decrease to 243℃ at 

10,000s. FHX tube-side outlet sodium temperature 

rapidly decreases until 110s to 315℃ and then 

increases to 379℃ at 170s. It reaches 174℃ at 

10,000s 

 

Fig. 9 Core In/Out Sodium Temperature 

 

Fig. 10 DHX Shell-side In/Out Sodium Temperature 

 

Fig. 11 AHX Tube-side In/Out Sodium Temperature 

 

Fig. 12 FHX Tube-side In/Out Sodium Temperature 

4.3 Heat Removal Trend 

 

 At the end of calculation time (10,000s), the core 

produces 48.4kW 

 PDHRS and AHX removes 35.9kW 

 ADHRS and FHX removes 29.0kW 

 

Fig. 13 Core Heat Transfer Rate 
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Fig. 14 AHX Heat Removal Rate 

 

Fig. 15 FHX Heat Removal Rate 

4.4 Summary 

 

The developed natural circulation flow at 10,000 for 

(1) Core: 0.5kg/s 

(2) PDHX Shell-side: 0.25kg/s 

(3) ADHX Shell-side: 0.22kg/s 

 

The natural circulation flow through DHX shell-side is 

a local path flow developed within cold pool and is 

almost same as the main path(core–hot pool–cold pool–

core) flow (Approximately 94%). 

In early stage of the accident, the decay heat from the 

core is larger than the heat removed by 1 AHX and 1 

FHX but it balances after 190s and reverses. At 1,360s, 

the difference is at max and the difference slowly 

decreases upto 10,000s. 

The flow peak occurs at about 600s in Fig. 4 due to the 

incoming sodium flow from cold pool through the 

breakage point to the core. This flow develops because 

the pressure drop is smaller than the normal path.  

 

5. Conclusion 

 

In this study, the pipe break events of STELLA-2 

facility with various conditions were analyzed with 

MARS-LMR. As expected, the back flow from cold 

pool to the inlet plenum occurs through the pump 

discharge pipe but the effect of decay heat removal was 

not significantly large at early stage of the event. 

However, the long-term behavior of heat removal is 

negative and there should be a technical solution to 

secure the long-term coolability of the core. The further 

study of comparison with experiment data will show 

more realistic analysis results and hopefully provide 

feedback to the safety design of the reference reactor. 
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