

Pipe Break Accident Analysis of STELLA-2 using MARS-LMR

KNS Fall Meeting, Oct. 20-22, 2021

Jewhan LEE (이제환)

Korea Atomic Energy Research Institute

CONTENTS

• • • • • •

01 Introduction

02 STELLA-2 Facility

MARS-LMR Analysis

04 Results and Discussion

Introduction

Pipe Break Accident DBE of SFR

Pipe Break Accident in SFR

- Primary pump discharge line failure
- Effect on the natural circulation flow path
- One of the DBEs of pool-type SFR
- For conservatism, Double-ended Guillotine Break(DEGB) is assumed
- Sodium from both sides flows out to cold pool

STELLA-2 Facility

Integra Effect Test Facility for PGSFR

STELLA-2 Facility

- Large-scale sodium test facility
- Focus on transient and integral effect
- Main purpose
 - ✓ Verification of DHRS performance
 - √ V&V for safety analysis code
- Includes all major components of PGSFR
- Difference
 - Nuclear core → Electric heaters
 - SG → sodium-to-air HX
 - Mechanical pump → EMP

STELLA-2 3D Drawing

STELLA-2 Installation & Control System

STELLA-2 Pipe Break Simulation

- Using special 3-way valve
- Universal joint long-reach arm
- Short actuation time

Pipe Break Simulation Valve

STELLA-2 3D Drawing

MARS-LMR Analysis

Node Layout and Assumptions Pipe Break Accident Sequence Test Matrix

MARS-LMR Node Layout

- Basic assumptions
 - ✓ Steady-state is set to match the temperature distribution
 - ✓ Loss of off-site power (LOOP)
 - ✓ Pumps stop and core heater follows the decay heat curve
- DHRS working option
 - ✓ 1 PDHRS + 1 ADHRS working
 - ✓ 2 PDHRS + 2 ADHRS working
 - ✓ 1 PDHRS + 2 ADHRS working
 - ✓ 2 PDHRS + 1 ADHRS working

Pipe Break Sequence

- 4.47 sec
 - ✓ Simulation valve open
 - ✓ Pump trip
 - ✓ UHX air flow stops
- 5.81 sec
 - ✓ Reactor trip (decay curve)
- 8.26 sec
 - ✓ DHRS starts to operate

STELLA-2 Pipe Break Test Matrix

STEER 2 Tipe break test had in		
PHTS Pump Discharge Pipe Break	- Rx Trip- with LOOP- 1 line Break- IHTS Na is not considered	 PHTS pump 1&2 stops Break Simulation Valve On IHTS pump 1&2 stops DHRS working condition: 2 passive + 2 active
	- Rx Trip - with LOOP - 1 line Break - IHTS Na is considered	- IHTS sodium inventory consideration: - SG F/W dryout simulation using UHX blower
PHTS Pump Discharge Pipe Break + DHRS 1 loop fail	- Rx Trip - with LOOP	- PHTS pump 1&2 stops - Break Simulation Valve On - IHTS pump 1&2 stops - DHRS working condition: - 2 passive + 1 active - 1 passive + 2 active
	1 line BreakIHTS Na is considered	- SG F/W dryout simulation using UHX blower
PHTS Pump Discharge Pipe Break + DHRS 2 loops fail	- Rx Trip - with LOOP - 1 line Break - IHTS Na is not considered	- PHTS pump 1&2 stops - Break Simulation Valve On - IHTS pump 1&2 stops - DHRS working condition: - 2 passive - 2 active - 1 passive + 1 active
	- Rx Trip- with LOOP- 1 line Break- IHTS Na is considered	- IHTS sodium inventory consideration: - SG F/W dryout simulation using UHX blower

Results

Flowrate Trend Temperature Trend Heat Removal Trend

Flowrate Trend

- 1 passive + 1 active DHRS case (the least heat removing condition)
- Sudden peak flow at ~600 sec
- Negative value for discharge line flow

AHX Tube-side

FHX Tube-side

Temperature Trend

- 1 passive + 1 active DHRS case (the least heat removing condition)
- Sudden drop at ~600 sec due to flow peak
- Slowly increasing as time goes

Core In & Out

DHX Shell-side In & Out

AHX Tube-side In & Out

FHX Tube-side In & Out

Heat Removal Trend

- 1 passive + 1 active DHRS case (the least heat removing condition)
- At the end of calculation, heat removal balance is not saturated
- More calculation is on-going

DHX Shell-side In & Out AHX Tube-side In & Out

Trend Summary

- Developed natural circulation flow at 10,000 sec for
 - \checkmark Core: 0.5 kg/s
 - ✓ Passive DHX : 0.25 kg/s
 - ✓ Active DHX : 0.22 kg/s
- Flow through DHX shell-side is a local path flow within the cold pool
- Almost same as the main heat removal path (~94%)
- In early stage, the core decay heat is larger than DHRS heat removal
- At 190 sec, it balances and reverses
- At 1,360 sec, max difference
- It slowly decreases upto 10,000 sec

Conclusion

Conclusion

- Pipe break events of STELLA-2 were analyzed
- Back flow from inlet plenum to the cold pool occurs
- At early stage, the decay heat removal is not significant
- But, long-term behavior is negative
- Further study of comparison with experiment data will show more realistic results
- It will be able to provide feedback to the safety design of the reference reactor