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1. Introduction 

 
Recently, small modular reactor (SMR) has been 

attracting attention in various aspects such as safety, 
usability, and convenience of construction. For this 
reason, various SMRs have been developed in many 
foreign countries such as USA, Russia and China. 

System-integrated modular advanced reactor 
(SMART) which is a SMR was developed by the Korea 
Atomic Energy Research Institute (KAERI) for the 
electricity generation and seawater desalination. 
SMART adopts a fully passive safety system consisted 
of four trains of passive safety injection system (PSIS), 
four trains of passive residual heat removal system 
(PRHRS) and Containment Pressure and Radioactivity 
Suppression System (CPRSS). 

An integral-effect test loop for SMART (SMART-
ITL) [1] was designed for various tests to understand 
the integral thermal-hydraulic behavior expected to 
occur in SMART. The SMART-ITL is equipped with 
PSIS and PRHRS except for CPRSS. The obtained 
experimental data is also used to validate the 
performance of the thermal-hydraulic code for the safety 
analysis. 

In the present study, an attempt was made to 
numerically predict the thermal-hydraulic phenomena in 
SMART-ITL. For this purpose, TASS/SMR-S code [2] 
which is a one-dimensional thermal-hydraulic code for 
the safety and performance analysis was used. The 
simulation was performed for the small break loss of 
coolant accident (SBLOCA) on the safety injection (SI) 
line. The predicted results were compared with the 
experimental data. 
 

2. Governing equations 
 

The governing equations of the TASS/SMR-S code 
are consisted of mass conservation equations for 
mixture, liquid and non-condensable gas, a momentum 
conservation equation for mixture and energy 
conservation equations for mixture and gas as follows: 
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where t  is the physical time for transient calculations, 
and *t  is the pseudo time for internal iterations to get 
the converged solutions at every physical time stage. 

The drift-flux model [3] was used to estimate the 
velocity of each phase. The Henry-Fauske model [4] 
was adopted to determine the critical flow rate at the 
break. 

 
3. Numerical methods 

 
The Governing equations were applied to the given 

nodalizations, shown in Fig. 1, using a staggered grid 
concept, and was discretized based on a semi-implicit 
method. The inviscid flux terms were discretized using 
an upwind method. The approximated Jacobian was 
adopted for the implicit operator in momentum equation. 
For the transient time-accurate calculations, a dual-time 
stepping time integration algorithm based on a 
linearized first order Euler backward differencing was 
used by adopting a time-step size with pseudo-time sub-
iterations. 
 

4. Nodalization 
 

In Fig. 1, the nodalization for the SMART-ITL with 
the PSIS is presented. The reactor coolant system (RCS), 
secondary system for the feedwater control valves to the 
turbine stop valves, safety injection tanks (SITs), core 
makeup tanks (CMTs), and the PRHRS are modeled. 
The entire computational domain is consisted of 406 
nodes and 461 paths. 
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Fig. 1. Nodalization of SMART-ITL 
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5. Results 
 

The prediction capability of the TASS/SMR-S code 
is evaluated using the test results of the SMART-ITL 
with regard to a SI line break. An assumption of critical 
flows is applied to the SIT isolation valve.  

The break occurs at t = 0 sec, and the pressure 
decreases and reaches setpoint of reactor trip. The 
reactor coolant pumps begin to coastdown and the 
feedwater supply is stopped due to the loss of offsite 
power assumed simultaneously with the reactor trip. As 
the PRHR actuation signal is generated by the low 
feedwater flow rate, the PRHRS isolation valves are 
opened. After that, the safety injection water is supplied 
to recover the water level of the reactor pressure vessel. 
The transient behaviors of the major thermal-hydraulic 
parameters are described as follows. 

In Fig. 2, the core power during the SI line break 
LOCA is presented. The test result showed that the core 
power decreased rapidly to the decay heat level due to 
reactor trip caused by the low pressurizer pressure 
(LPP). The reactor trip time by the LPP is predicted 
accurately. 

In Fig. 3, the break flow rate is presented. The test 
results showed that the coolant was discharged rapidly 
through the break. The break flow rate formed a critical 
flow in the early phase of the accident and decreased as 
the system pressure decreased. The predicted break flow 
rate is reasonable. 

 

 
Fig. 2. Core power 

 

 
Fig. 3. Break flow rate 

 

 
Fig. 4. Pressurizer pressure 

 
In Fig. 4, the behavior of pressurizer (PZR) pressure 

is presented. When the SI line break occurred, the PZR 
pressure dropped quickly and the reactor trip signal by 
the LPP was generated. The system pressure decreased 
continuously after the reactor trip. The depressurization 
rate is predicted comparatively well. 

 
6. Conclusions 

 
In the present study, a numerical simulation was 

carried out to predict the thermal-hydraulic phenomena 
for SBLOCA in SMART-ITL. For this purpose, the 
TASS/SMR-S code was used. The calculation was made 
for the SI line break SBLOCA with the operation of 
PSIS. It was shown that the agreement between the 
prediction and test is reasonably good for the core 
power, break flow rate, and PZR pressure. 
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