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1. Introduction 

 
In general, fatigue life estimation has been carried out 

using numerous end-of-life data points, which are 

usually represented on a stress/strain-life (S-N) curve 

plot [1-3]. One data point on the S-N curve implies one 

failure time data of a single fatigue test. Therefore, to 

construct the entire S-N curve with reliable scatter band 

requires almost hundreds of fatigue tests. However, it 

may not always be possible to conduct hundreds of 

expensive and time-consuming fatigue experiments for 

each and every different testing case. Additionally, 

aforementioned S-N curve approach disregards data 

history during the whole fatigue experiment which might 

have additional information to use. 

In this regard, some condition-based modeling 

approaches were proposed to predict the remaining 

useful life (RUL) of fatigue in real time by estimating the 

degradation of the material over time [4, 5] rather than 

predicting the fatigue life of the material from the 

beginning. In those condition-based approaches, the long 

short-term memory (LSTM) network [6] plays an 

important role in the RUL estimation because it can 

handle the time-series sequential data without the 

vanishing/exploding gradient problem. 

Therefore, we developed a condition-based fatigue 

RUL model using a simple LSTM network with a few 

fatigue test data. In addition, we compared other 

condition-based modeling approaches without using the 

LSTM network to investigate whether the LSTM 

network is really appropriate for this case or not. 

 

2. Fatigue Test Data 

 
Table 1. Fatigue test data (Alloy 52M, strain-controlled). 

Test ID Environment 
Strain 

Amplitude 
Strain Rate Fatigue Life 

MAH501-1 

300 ℃ 

In-air 

0.5 %, 

0.1 %/s 

2373 

MAH501-2 3779 

MAH501-3 3831 

MAH651-1 
0.65 %, 

1472 

MAH651-2 1367 

 

Table 1 summarized the testing conditions of the 

fatigue data. A total of 5 strain-controlled fatigue data 

were used for the model development. The material of 

the specimen is Alloy 52M weld. The detailed 

information of the specimen and the fatigue test were 

well described in reference [7].  

During the fatigue testing, we measured the 

stress/strain state of the specimen in real time. Figure 1 

shows an example of the time-series fatigue data as 

represented in the hysteresis loop form. In Fig. 1, symbol 

N implies the number of cycle. 

 
Fig. 1. Example of time-series fatigue data as represented in 

hysteresis loop form (specimen: MAH651-2). 

 

 
Fig. 2. Cyclic-series maximum/minimum stresses. 

 

It should be noted that the time-series data represented 

in Fig. 1 shows a repetitive pattern over the cycle. 

Therefore, it is inefficient to use all the data in Fig. 1 

without refinement. We extracted some cycle-series 

material parameters which represent the each cyclic state 

of the material. For example, maximum/minimum stress 

at each cycle can be a candidate (see Fig. 2). 
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In this study, we considered the following 7 cycle-

series material parameters: 1) elastic modulus 𝐸𝑁 , 2) 

elastic strain amplitude 𝜀𝑎,𝑁
el . 3) Chaboche type kinematic 

hardening parameter 𝐶1,𝑁  [8], 4) Chaboche type 

kinematic hardening parameter 𝛾1,𝑁 [8], 5) Plastic strain 

range Δ𝜀𝑁
pl

, 6) Tensile stress amplitude 𝜎𝑎,𝑁 , 7) plastic 

strain energy PSE𝑁 (i.e., inner area of the hysteresis). 

 

3. Condition-Based Modeling 

 

In the modeling step, the aforementioned 7 cycle-

series material parameters are regarded as the inputs. 

Whereas, the RUL of each cycle (RUL𝑁) is regarded as 

the corresponding target. Therefore, in this case, the 

modeling implies to find the best relation pattern 

between the 7 cycle-series inputs and 1 corresponding 

target.  

Before the modeling, we performed some input/target 

pre-processing to enhance the modeling efficiency as 

follows: 

 

 Discard the input/target data before reaching the 

maximum tensile stress amplitude. 

 Divide input data by each initial value to obtain the 

relative dimensionless values. 

 Standardize the dimensionless input data to have the 

mean of 0 and the standard deviation of 1. 

 Convert the target using the hyperbolic tangent 

function (see the target equation 𝑇(𝑁) in Fig. 3) to 

focus on the near-failure region (e.g., from 100 

cycles before the fatigue life to the fatigue life). 

 
Fig. 3. Example of cycle-series target (specimen: MAH651-2). 

 

As the model form, we considered the 5 functions and 

networks as follows: 

 

1) Multiple linear regression (MLR) 

2) Multiple regression with linear and square terms 

(MRsq) 

3) Multiple regression with linear and quadratic terms 

(MRquad) 

4) Artificial neural network (ANN) regression with 1 

hidden layer (36 hidden layer elements, sigmoid 

activation function) 

5) Long short-term memory (LSTM) network 

regression with 1 hidden layer (36 hidden layer units, 

hyperbolic tangent activation function)  

 

Both the ANN and LSTM training were carried out 

using the MATLAB (ver. R2019b) Deep Learning 

Toolbox. The objective function for the training is mean 

squared error (MSE). 

To compare the performance of the aforementioned 5 

models, we considered the 5 different training/test cases 

as shown in Table 2. 

 
Table 2. Model training/test cases. 

Case Number Test Data Training Data 

#1 MAH501-1 Rest of data 

#2 MAH501-2 Rest of data 

#3 MAH501-3 Rest of data 

#4 MAH651-1 Rest of data 

#5 MAH651-2 Rest of data 

 

The model performance is estimated based on the root 

mean squared error (RMSE) of the test data in each case, 

excluding training data. Table 3 shows RMSEs of 5 

models in each training/test case. 

 
Table 3. RMSE of test data in each training/test case. 

Case 

Number 
MLR MRsq MRquad ANN LSTM 

#1 12.38 28.28 82.92 24.8 17.3 

#2 5.38 7.59 86.56 23.3 8.37 

#3 10.80 9.94 13.10 22 4.42 

#4 19.14 18.79 22.44 18.5 20.5 

#5 39.54 24.16 843.7 19.5 18.4 

Avg. 17.45 17.75 209.7 21.62 13.79 

 

From Table 3, it is shown that the average RMSE of 

the LSTM model is the lowest. This implies that at least 

for the fatigue data sets used in this work the LSTM 

model is the best model for predicting the RUL. In 

general, it is known that the complicated model can 

easily fall into the overfitting problem. However, it is 

interesting that the LSTM model does not over-fits even 

though the LSTM model is actually the most complicated 

model among the considered 5 models in this study. We 

suspect that this superiority of the LSTM model is due to 

the consideration of the sequential data inputs, which the 

other models (e.g., MLR) do not have.From this result, 

we can conclude that the LSTM model is suitable for the 

RUL prediction of fatigue. 

 

4. Conclusions 

 

We developed condition-based fatigue RUL models 

with 5 strain-controlled Alloy 52M fatigue data in 5 

different models. By comparing the RMSE of the test 
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data in each training/test case, it can be concluded that 

the LSTM model is suitable for the RUL prediction of 

fatigue. 
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