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1. Introduction 

 

During the last decade, Artificial Neural Networks 

(ANN) became a solid instrument for solving complex 

and widespread problems such as image recognition or 

defect (anomaly) detection. At the same time, since 

ANNs are essentially Machine Learning (ML) 

algorithms, they are being successfully applied for 

numerical data prediction and analysis. For example, we 

used ANN-based surrogate models for accelerating our 

in-house reactor analysis codes as well as reactor 

simulation methodologies. Thus, we applied a 

Convolutional Neural Network (CNN) to the problem of 

reactor design parameters estimation [1]. Later, we found 

that using an ANN for whole-core parameters prediction 

was not as promising as building a surrogate ANN model 

for homogenized macroscopic cross-section (XS) 

generation [2]. That study led us to development of a 

brand-new nodal diffusion code system – RAST-AI. The 

establishment of the RAST-AI code system is briefly 

discussed in [3]. 

To train a neural network model that can predict XS 

data required by RAST-AI, we needed to significantly 

optimize our data preparation workflow. Since the idea 

of RAST-AI is to work with a free-range geometry, we 

would have to deal with way too many free-range 

parameters, such as Fuel Assembly (FA) layout, each 

Fuel Pin (FP) fuel configuration and enrichment, various 

operation parameters such as boron concentration 

(BOR), fuel temperature (TFU) change due to power 

change, moderator temperature (TMO), burnup, etc. 

Even the FP configuration alone can create a significant 

problem, since each 16x16 FA contains 236 FP, which 

can be generalized to 32 unique FP positions as a result 

of octant symmetry. This could theoretically lead to over 

2·1035 unique FA configurations in case of having all 

unique FP compositions.  

Though it sounds like a tremendously complex 

problem, it is something that ANNs are known to 

successfully deal with. Thus, a typical image recognition 

problem consists of theoretically infinite number of each 

class images, which can only be reduced to finite 

(though, still extremely large) number if we restrict the 

pixel size of images to some reasonably small value. 

Therefore, if we generalize the training data as much as 

possible, we would be able to train a model that can 

detect underlying dependencies between the input and 

output and make a prediction with reasonable accuracy. 

In our last publication [4], we attempted to generalize 

the data preparation for an ANN in terms of the required 

training dataset size. We found that for a general case 

prediction, the training dataset size can be greatly 

reduced. In this paper, we are discussing how this result 

and methodology was applied to the problem of 

macroscopic XS generation. 

 

2. Methodology 

 

As stated in the Introduction, the problem size that we 

have to deal with, is extremely large. Therefore, from the 

very beginning we decided to make the model as general 

as possible. In particular, we decided to use 5 fuel 

enrichment types (from 1.0 wt% to 5.0 wt%), and to 

distribute given enrichments in such a way that any 

number of training geometries in our dataset would have 

a uniform distribution of FP enrichments. This means 

that in each FP position within FA each enrichment will 

appear equal number of times. We expect that such a rule 

would be beneficial for an ANN. In addition, we decided 

to use 90 branch calculations in which the values of 

BOR, TMO and TFU are picked from the list shown in 

Table I. 

 

Table I: Range of FP Enrichments and Branch Parameters 

used in Training and Testing Datasets 

Enrichment, % BOR, ppm TMO, K TFU, K 

1.0 0.1 300 300 

2.0 300 450 600 

3.0 600 584* 850* 

4.0 700* 600 900 

5.0 900 

 

1200 

 1200 1500 

1500  
* Default case 

 

The values marked as the default values in Table I are 

not part of the actual branch calculations and are 

calculated only once for the default case. Other values 

are interchanged in the abovementioned branch 

calculation, thus producing the total number of 90 per 

each geometry. The idea behind the given numbers is to 

cover as wide range of parameters as possible, while 

keeping a wide gap to save computation resources. 

Once the training and testing data structure was 

defined, we used our in-house lattice physics code 

STREAM [5] for calculating homogenized XS and pin 

power shapes for an arbitrary number of geometries. The 

data produced by STREAM was used for training and 

testing the ANN model. In all studied cases, we separated 

training and testing data geometries so that there was no 
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overlap of geometry between that data. The final model 

was also evaluated using a completely independent data 

that is using random enrichments in range between 1.0 

and 5.0 wt%. Unlike in training data, we did not fix the 

enrichment values to certain numbers in this additional 

testing dataset. Therefore, it consists of a continuous 

range of enrichments that do not have any pattern inside 

FA. Finally, the branch parameters of the additional 

testing dataset also contain non-fixed values of BOR, 

TMO and TFU, which should represent the ultimate 

general case testing problem. 

 

 

3. Dataset optimization 

 

3.1. Optimization of branch number 

 

To start the dataset optimization, we decided to 

generate 1900 training geometries and 100 validation 

geometries. For the testing data, additional 100 

geometries were generated using the same technique. We 

applied all the rules and methods established in Section 

2. In particular, we separated geometries of training data 

and geometries of validation data, since our goal was to 

train a general case model. As a result, the total number 

of training samples is 171,000 (1900 geometries with 90 

branches each). 

Before we can determine the optimal number of data 

samples, we can find how many branch cases are needed 

for such kind of problem. As stated earlier, we arbitrarily 

chose the number of branch calculations as 90, which is 

in fact lower than in our previous studies [2, 3], where 

the total number of branches was chosen as 294. The 

problem with having many branch calculations is that 

each branch calculation takes the same amount of time as 

any other calculation, including those with different 

geometries. Therefore, in case of having limited 

computation resources, a hard choice needs to be made 

in order to choose the number of branch calculations 

versus the number of geometries. From our previous 

experience, we empirically observed that the number of 

branches plays lesser role compared to the number of 

geometries. To evaluate it using a systematic approach, 

we made the following steps. 

First, shuffled the training dataset so that each 1900 

training samples picked from it contained 1900 different 

geometries on average. Then, we randomly picked 3 

smaller datasets from the training dataset. The chosen 

numbers of samples were 5760, 23040, and 46080. Since 

the data was shuffled beforehand, each of those sub-

datasets contained around 1900 geometries and variable 

number of branch points for each of those geometries. 

Divided by 1900, those sample number yield around 

3.03, 12.12, 24.25 of branch sizes per geometry. 

These chosen smaller datasets were evaluated using 

the neural network model that we developed for this task, 

and which is described in [2]. To improve the variance 

of the model prediction, we decided to use the ensemble 

model approach as discussed in [4]. Each training dataset 

was used for 10 models training, each training took 7000 

epochs, the learning rate was chosen as 0.00012, which 

is lower than the default 0.001, thus producing less 

fluctuations during the model training and less variance 

in the final result. The mini-batch size was fixed for all 

models produced in this study and was chosen as 256. 

The results for all obtained ensemble models are 

shown in Table II. 

 

Table II: Mean Relative Difference of the Testing Dataset 

versus Predicted using Ensemble ANN models 

Branches (avg.) Mean STD 

3.03 0.782 0.036 

12.12 0.694 0.023 

24.25 0.69 0.039 

 

The results given in Table II demonstrate that further 

increase of the branch number provides very little benefit 

to the trained model accuracy. 

To make the result more practically useful, the results 

from Table II were approximated using built-in 

capability of Microsoft Excel. It was found that Power 

function has the most suitable shape for such task. 

General form of a Power equation can be stated as: 

 
by Ax=                           (1) 

 

In Eq. (1), y is the target function, which in our case 

is Mean Relative Difference (MRD), x is the argument 

(in our case – number of training samples), A and b – 

coefficients that are to be determined either manually or 

using specialized software. In our case, the value of b 

was found below 0, which shows the trend of MRD 

change with increased number of samples x. 

With the obtained function, it is possible to estimate 

the MRD values for various numbers of training samples, 

including those that are way beyond the current dataset 

size. However, it is often more desirable to further 

process this estimation and produce Relative Gain (RG) 

of MRD per every additional training sample. 

The philosophy behind RG is the following. In our 

case, training samples are produced using computer code 

calculation. Each sample (regardless of branch or 

geometry) can be assumed to have fixed average time to 

be generated. Therefore, generating every new sample 

will add up to both the total computation time and to the 

gained accuracy of the resulting model. However, the 

time increase per sample is linear by definition, while the 

accuracy gain (or reduction of MRD) is close to the 

Power function shape, which is non-linear and 

decreasing as can be found from the data in Table II. 

Hence, at some finite number of samples the value of RG 

is expected to decrease so low that it would not be 

reasonable to spend extra resources for further 

generating samples. 

In case of having a table of discrete dataset sizes 

similar to Table II, the value of RG for each additional 

number of samples can be found as: 
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In Eq. (2), (N-1) parameters are found for the previous 

number of samples (smaller number of samples x and 

larger MRD y than in (N) case). (N) parameters are found 

for the current (or target) number of samples (larger x and 

smaller y than in (N-1) case). A is a weighting parameter, 

which can be defined or assigned depending on other 

conditions. Regardless of the parameter A value, the 

shape of the obtained RG function is expected to have 

the trend as shown in Figure 1. 

 

 

 
Fig 1. Shape of Relative Gain function for branches 

 
The choice of the optimal RG value is expected to be 

experience-based, since it may vary based on the 

weighting parameter value or the particular data, as well 

as available computation resources. In our case, we 

decided to choose the number of samples where the value 

of RG shown in Figure 1 is close to 1.0. For this 

particular problem it was found around 7000 samples, 

which in return yields around 3.68 branches per 

geometry. It is important to note that this value is 

obtained not for certain branches but for random branch 

samples from the fixed list of Table I. Therefore, we can 

expand this dataset further by generating additional 

geometries with 3-4 random branches from the list. 

 
3.2. Optimization of number of fuel assembly geometries 

 
Based on the result obtained in Section 3.1, we know 

that the optimal number of branches for our particular 

problem can be assumed around 4 per geometry. 

Therefore, we can use the same methodology to obtain 

the target number of geometries for chosen number of 

branches. Using the same ensemble ANN model 

methodology as discussed in Section 3.1, we can obtain 

the results for the number of geometries with 4 random 

branches per geometry as shown in Table III. 

 

Table III: Mean Relative Difference of the Testing Dataset 

versus Predicted using Ensemble ANN models 

Geometries Mean STD 

128 11.87 1.333 

512 1.577 0.194 

1216 0.911 0.037 

 

Compared to the results shown in Table II, we can see 

the confirmation of the result obtained in Section 3.1. 

The impact of branches is less dominant compared to the 

impact of geometries. At the same time, the tested cases 

with different number of geometries show signs that 

adding more geometries can further improve the result. 

Using the same RG calculation technique, we found that 

the optimum number of geometries should be around 

7000 as shown in Fig. 2. 

 

 

 
Fig 2. Shape of Relative Gain function for geometries 

 

This time, we decided to test the estimated MRD value 

obtained using this method. For this purpose, we 

generated additional 8000 training geometries with 4 

random branches each. We made sure that these 

additional geometries do not duplicate those used for 

testing and validation. This new data was merged with 

the already existing 1900 geometries, picking only 4 

branches for the original cases. The estimation was 

predicting the MRD value around 0.275%. However, the 

actual ensemble ANN training showed the value of 

0.313%, which is higher than the estimation due to 

uncertainty of the chosen extrapolation model. At the 
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same time, the higher actual MRD value means that the 

real RG for this case is even lower, which proves the 

efficiency of the chosen approach.  

Finally, the result of ANN model prediction for the 

additional testing data with continuous random 

enrichments and branch parameters was tested with the 

last generated model. The MRD for that testing data was 

found around 0.66%, which is higher than the original 

testing data (0.313%). At the same time, this result can 

be considered reasonable since the additional testing 

dataset demonstrates an extreme level of generalization. 

As mentioned in the end of Section 2, the additional 

testing dataset is using all random FP enrichments 

continuously ranging from 1.0 to 5.0 wt% placed at 

random places of the FA, as well as random branch 

parameters that have continuous values in range of 

training data values. Therefore, such kind of chaotic data 

structure was not seen by a neural network neither at the 

stage of training, nor at the stage of validation, and can 

hardly be expected in real world practical scenarios. 

 
4. Conclusions 

 

In this study, we demonstrated the method of training 

dataset optimization, which was used for preparing 

training data for our ANN model that is predicting 

homogenized macroscopic XS, pin-wise power 

distribution inside FA and other parameters required for 

nodal diffusion calculation. The abovementioned method 

was applied to the optimization of branch calculation 

number per one FA geometry and to optimization of the 

total number of training FA geometries. 

In case of number of branches, it was shown that this 

value can be significantly reduced (namely from original 

90 to 4) without significant impact on the final result. As 

for the number of geometries, the final generated number 

stopped at the value of 9900, which results in 39,600 total 

training samples (4 branches per geometry). This number 

is significantly lower than the originally generated 

171,000 samples (1900 geometries with 90 branches 

each). At the same time, the Mean Relative Difference 

obtained using independent geometry testing data was 

found significantly lower for the optimized dataset 

(0.313% versus the original 0.719%). 

In future studies, we are planning to continue our work 

on the topic by adding further optimization steps that can 

save even more computation time and disk resources.  

 

Acknowledgement 

 

This work was supported by the National Research 

Foundation of Korea (NRF) grant funded by the Korea 

government (MSIT).  

(No. NRF-2019M2D2A1A03058371). 

 

 

 

 

 

REFERENCES 

 
[1] S. Dzianisau, H. Kim, C. Kong, D. Yun, D. Lee, 

Development of Barcode Model for Prediction of PWR Core 

Design Parameters Using Convolutional Neural Network, 

Transactions of the Korean Nuclear Society Autumn Meeting, 

Goyang, Korea, Oct 23-25, 2019.  

[2] S. Dzianisau, J. Choe, A. Cherezov, D. Lee, Macroscopic 

Cross-Section Generation for Nodal Code RAST-K Using 

Artificial Neural Network, Transactions of the Korean Nuclear 

Society Autumn Meeting, Changwon, Korea, Dec 16-18, 2020 

(online). 

[3] S. Dzianisau, J. Choe, A. Cherezov, D. Lee, Acceleration of 

Nodal Diffusion Calculations Using Machine Learning-Driven 

Generation of Homogenized Macroscopic Cross-Sections, 

ANS M&C 2021, Raleigh, North Carolina, October 3–7, 2021 

(accepted). 

[4] S. Dzianisau, M. F. Khandaq, D. Lee, Impact of Training 

Dataset Reduction on the Prediction Accuracy of Nuclear 

Design Parameters using Convolutional Neural Network, 

Transactions of the Korean Nuclear Society Spring Meeting, 

Jeju, Korea, May 13-14, 2021 (online). 

[5] S. Choi, C. Lee, D. Lee, Resonance Treatment using Pin-

Based Pointwise Energy Slowing-Down Method, Journal of 

Computational Physics, vol. 330, pp.134-155, 2017. 

 

 

 

Transactions of the Korean Nuclear Society Virtual Autumn Meeting

October 21-22, 2021




