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 So far, there have been six nuclear tests in neighboring countries, and despite the nuclear test 
ban treaty, continued nuclear activities can lead to nuclear threats, so many countries are 
keeping a close eye on their nuclear activities. 

 Xenon isotopes and their isomers are the most likely observable radioactive signatures of 
nuclear test. 

 They are collected in the atmosphere from control stations deployed through the International 
Monitoring System (IMS) established by the Comprehensive Nuclear-Test-Ban Treaty 
Organization (CTBTO). 

[ Fig. 1. IMS Station map established by CTBTO ] 
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 There are many possible facilities generating xenon isotopes such as different types of reactors and 
nuclear tests, which makes it difficult to identify the source of the xenon isotopic detection. 

 Therefore, it is very important to devise a reliable indicator which can discriminate the source of 
xenon detection. 

 Although there have been lots of researches in analyzing xenon isotopic characteristics, there are no 
comprehensive works on the xenon isotopic characteristics for various facilities in neighboring 
countries. 

 The nuclear facilities operating in neighboring countries include IRT research reactor, nuclear fuel 
reprocessing facilities, uranium enrichment facilities, and 5MWe graphite reactor(MAGNOX) in 
Yongbyon. 

 In this work, the characteristics of xenon isotopic activity ratios are analyzed and discussed in detail 
for the various reactors including PWR, CANDU, IRT-2000, and MAGNOX reactors. 

[ Fig. 2. Various nuclear reactor ] 
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 In this work, TRITON and ORIGEN 
modules in SCALE6.2 were used to 
analyze the xenon isotopic characteristics 
for various reactor types. 

 Several codes included in SCALE can be 
represented through a platform called 
Fulcrum. 

 In this study, ORIGEN and TRITON codes 
were performed (Fig. 3) 

• TRITON generates one-group effective 
cross sections as a function of burnup, 
uranium enrichment, and so on through 
depletion calculation coupled with 
transport calculation. 

• ARP interpolates the effective one-group 
cross sections for a given parameter set. 

• ORIGEN performs the point depletion and 
decay calculations with the prepared one-
group effective cross section. 

ORIGEN 

[ Fig. 3. TRITON calculation sequence and follow- on ORIGEN calculation ] 

• Output(.out) 
• Spent Fuel 
Isotopes(.f71) 
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 SCALE 6.2 provides a user-friendly GUIs designed to create, modify, view and visualize input, output, 
and files. 

• Geometry models can be visualized for sequences that use KENO V, KENO-VI, Monaco, and 
NEWT 

• ORIGEN concentration file (f71) with integrated unit conversion (OPUS capability) 

[ Fig. 5. SCALE Graphical User Interface – Fulcrum] [Fig. 4. SCALE] 
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 In this work, we considered the following 
reactors : 

• PWR (WH 17x17) 
• CANDU 
• IRT-2000 
• MAGNOX (Yongbyon 5MWe graphite 

moderated reactor) 

 

 

 

Parameter PWR CANDU IRT-2000 MAGNOX 

Fuel 
assembly 
type 

W17x17_ofa Candu37 IRT-2M 3tube MAGNOX 

Number of 
Fuel pin 264 37 - - 

Fuel 1.5~6.0 wt% 
UO2 

0.711 wt% 
UO2 

36.15 wt% 
UO2 

0.711 wt% U + 0.5 wt% 
Al 

Cladding Zircaloy-2 Zircaloy-2 Al Mg - Al(0.8  wt%) + 
Be(0.03 wt%) 

Moderator H2O D2O H2O Graphite 

Fuel pin 
diameter(cm) 0.7844 1.215 0.064 2.5 

Clad 
thickness(cm) 0.05715 0.0465 0.064 0.05 

Fuel 
density(g/cm3) 10.516 10.6 2.63 18.17 

Moderator 
density(g/cm3) 0.71 0.836 1.0 1.628 

[ Table 1. Specification of each reactor assembly ] 

[ Fig. 6. The reactors modeled with SCALE 6.2 ] 

<PWR> <CANDU> 

<IRT-2000> <MAGNOX> 
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 Table 2 summarizes the conditions for depletion calculation including decay.   

 The depletion calculation was performed using ORIGEN with the CRAM (Chebyshev rational 
approximation method) solver option. 

 Initial the masses of uranium in all cases are normalized to 1 ton. 

 The number of depletion calculation time steps including decay calculation :  600 

 The decay calculation after shutdown was performed up to cooling period of 100 days. 

 

[ Table 2. Burn data of each reactor in ORIGEN Calculation ] 

PWR CANDU IRT-2000 MAGNOX 

Burn Time (day) 375/60 700 350 4000 

Number of Cycle 3 1 1 1 

Specific power 

( 𝑀𝑀𝑀𝑀/𝑡𝑡) 
40/0.004 19.5 557.1 0.502622 

Burnup (𝑀𝑀𝑀𝑀𝑀𝑀/𝑡𝑡) 45,000 13,650 195,000 2,010 

Cooling time after 

shutdown (day) 
100 
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[ Fig. 7.  Xenon isotopic activities for different uranium enrichments ] 

 135Xe radioactivity increases 
as uranium enrichment while 
the others’ radioactivities do 
not change so much : 

• Higher enrichment  
lower thermal flux  
lower thermal neutron 
absorption by 135Xe  
higher 135Xe 
concentration. 

  After shutdown, 135Xe 
increases for ~10 hours due to 
the decay of I-135. 
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 We used isotopic activity ratio because collected 
isotopic activity can be changed depending on 
nuclear fuel mass and burnup. 

 During reactor operation, xenon isotopic activity 
ratios reach equilibrium after a certain period. 

 The equilibrium of 135Xe/ 133Xe ratio increases as 
uranium enrichment. 

 For example, the equilibrium 135Xe/ 133Xe ratio for 
6.0 wt% uranium enrichment is higher by ~2.8 
times than the one for 1.5 wt% uranium 
enrichment. 0 200 400 600 800 1000 1200 1400

1E-06

1E-04

1E-02

1E+00

1E+02

1E+04

13
5 Xe

/13
3 Xe

days

 e15
 e20
 e30
 e40
 e45
 e50
 e60

[ Fig. 8. 135Xe/133Xe activity ratio for different 
uranium enrichments ] 

4. Calculation Results (PWR, Xenon Isotope Radioactivity  
     Ratios) 
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[ Fig. 9.  Xenon isotopic activities for different reactor types ] 

4. Calculation Results (Reactor Types, Xenon Isotope    
     Radioactivity) 

 IRT-2000 shows the highest 
radioactivity for all the nuclides 
due to high specific power and 
uranium enrichment. 

 For all the nuclides, the 
equilibrium isotope 
radioactivity increases as 
specific power. 

 MAGNOX having lowest 
specific power has the lowest 
equilibrium isotopic 
radioactivity.  
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 CANDU shows high increase of 135Xe/ 133Xe after 
shutdown even though its specific power is 
lower than PWR.  

 The equilibrium 135Xe/ 133Xe ratio can be used as 
an indicator for discrimination of the reactor 
types even if there are some overlaps between 
IRT-2000 and CANDU. 

 

[ Fig. 10. 135Xe/ 133Xe activity ratio for different 
reactor types ] 

4. Calculation Results (Reactor Types, Xenon Isotope    
     Radioactivity Ratio) 
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 The uranium enrichment gives a significant effect on the135Xe/ 131mXe isotopic ratio. ( Fig. 11 ) 
• The initial value : 20~60 

 It is possible to discriminate MAGNOX reactor from the other reactors and to discriminate IRT-2000 
and CANDU from the other reactors except for the PWRs having very low uranium enrichments less 
than ~1.0wt% within several hours after shutdown. ( Fig. 12 ) 

[ Fig. 11. Comparison of the 135Xe/ 131mXe isotopic 
ratio evolutions for PWRs with different uranium 

enrichments ] 

[ Fig. 12. Comparison of the 135Xe/131mXe 
isotopic ratio evolutions for different reactors 
(PWR with 4.5wt% uranium enriched fuel) ] 

4. Calculation Results (Reactor Types, Xenon Isotope    
     Radioactivity Ratio, After Shutdown) 
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 In this study, we analyzed the xenon isotopic activities generated by nuclear activity in neighboring 
countries to find the source of nuclear activity. 
 

 The activity of xenon isotopes was identified and their ratios were evaluated through SCALE 
simulation for the four possibly operable reactors (PWR, CANDU, IRT-2000, MAGNOX). 
 

 In particular, 135Xe was remarkable isotope, which was more affected by neutron flux than other 
xenon isotopes and showed significant changes by three factors (uranium enrichment, specific 
power, and moderator). 
  
 Under a same specific power, higher uranium enrichment of nuclear fuel  leads to the low 

neutron flux, which reduces neutron absorption of 135Xe and so gives higher equilibrium 
concentration. 

 High specific power produces a large amount of xenon isotopes. 
 Higher increase of 135Xe after shutdown was observed for CANDU due to lower thermal neutron 

absorption by good moderating ratio of D2O. 

 Finally, it was shown that the MAGNOX reactor can be discriminated from the other reactors using 
135Xe/ 133Xe ratio at the equilibrium state, and that CANDU and IRT-2000 reactor can be discriminated 
using this xenon isotopic ratio from PWRs having conventional uranium enrichments of 3.0~5.0wt%. 
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