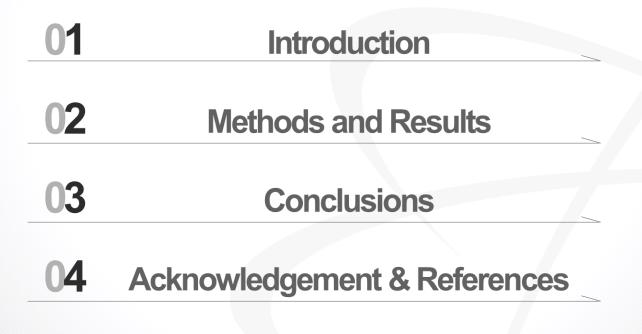
PO1C13

Design of the spacer for the multi-layer pressure vessel installed in the reactor pool


Junghyun Ryu Jinbok Choi

Kijang Research Reactor Design and Construction Project, KAERI

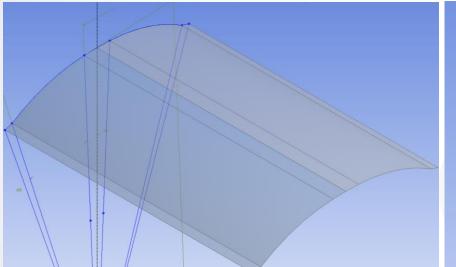
2021. 10. 21.

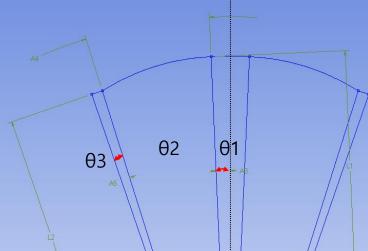
CONTENTS

01 Introduction

Paper No. PO1C13 Introduction

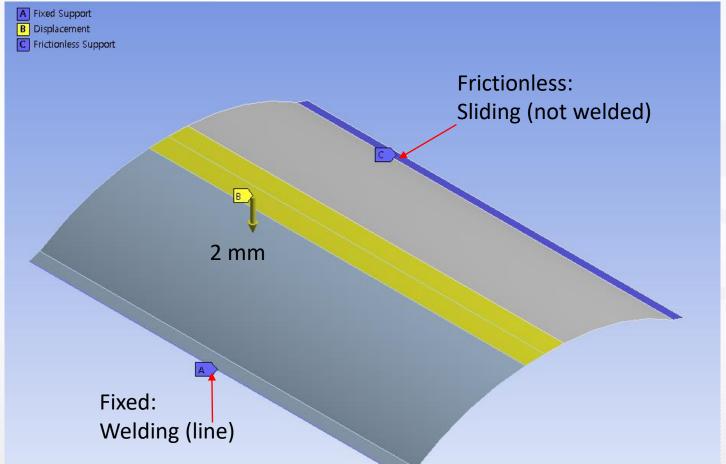
Objective


- In the case of the multi-layer pressure boundary assembly, the cooling of the inner layers should be considered also to avoid overheating the layer due to nuclear heating.
- Thus, the conduction through the spacer between the layers would be one of the possible approaches for sufficient cooling of the vacuum chamber as the inner layer.
- In this case, the trade-off between stress and temperature should be considered in the design stage because the stiffer spacer, the lower the thermal resistance.
- In this study, stiffness and the thermal resistance of the spacer between the two cylinder is investigated and reviewed whether the spacer can be contributed to the thermal conduction meaningfully.

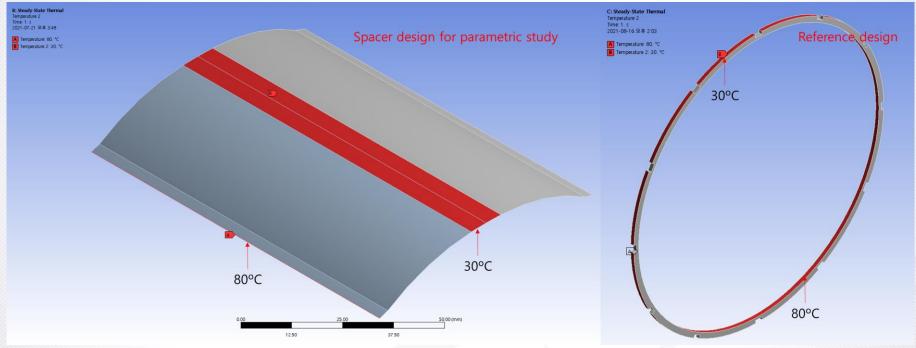


02 Methods and Results

Design parameter



Parameters	Description	Objective
t	Thickness: 0.41 mm and 0.508 mm.	Trade off between stiffness and thermal resistance
θ1	Half-angle for the contact region with outer cylinder	Sensitivity of the contact surface area
θ2	Angle for the transient region inner and outer cylinder	Trade off between stiffness and thermal resistance
63	Angle for the contact region with inner cylinder	Sensitivity of the contact surface area



Boundary condition for the structural analysis

 Only one edge is fixed and the other edge is slide freely along the inner cylinder surface to prevent excessive stress.

Boundary condition for the thermal analysis

- The temperature of the fixed edge is 80°C, and the temperature of the contact surface with the outer cylinder surface is 30°C.
- The temperature of the inner surface of reference spacer is 80°C, and the temperature outer surface is 30°C.
- The heat transfer rate through reference spacer, is used as a reference value. KARRI Research Institute

Reverse engineering procedure

θ1(°)	θ2(°)	θ3(°)	t	σ _m +σ _b (MPa)	W
2.5	15	1.5	0.500	335.0	11.52
2.5	7	1.5	0.500	1329.3	21.71
2.5	15	1.5	0.410	277.7	9.45
2.5	7	1.5	0.410	1111.4	-17.77
2.5	20	1.5	0.410	162.4	-7.28
2.5	25	1.5	0.410	110.9	-5.92
1.5	25	1	0.410	114.3	-6.03
2.5	15	1.5	0.508	227.8	11.71
2.5	20	1.5	0.508	132.7	9.02
2.5	25	1.5	0.508	90.8	7.33
2.5	22.5	1.5	0.508	108.6	8.09
1.5	22.5	1	0.508	112.5	8.26

Final design

- The temperature of the fixed edge is 80° C, and the temperature of the contact surface with the the results clearly show that θ_2 is the major factors for the trade-off between stiffness and thermal resistance, and heat transfer rate is not sensitive to the change of the contact surface area (θ_1 and θ_3).
- The heat transfer rate of the spacer is about 10 W if it satisfies the structural requirement. which is much smaller than that of the reference spacer design, 3419 W.

03 Conclusions

O3 Conclusions

- The parametric study shows the spacer can absorb uncertainty due to the misalignment or welding contraction without excessive stress and the contact surface area is not a critical factor for the heat transfer.
- However, additional heat transfer mechanism, such as aluminum mesh, could be introduced additionally, because heat transfer rate through the spacer is too small comparing with the reference spacer.

04 Acknowledgement & References

Paper No. PO1C13 Acknowledgements & References

Acknowledgements

 This work was supported by the Ministry of Science and ICT (MSIT) grant funded by the Korean government.

References

[1] ASME Bolier and Pressure Vessel Code, Section II Part D, Material, American Society of Mechanical Engineers, 2013

THANK YOU

