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1. Introduction 

 
As Kori unit 1 and Wolsung unit 1 were permanently 

shut down for decommissioning, estimating the disposal 
amount of waste from decommissioned nuclear reactors 

has become one of the pressing issues. Recently, waste 

disposal amount of Kori unit 1 reactor vessel has been 

evaluated for various options of disposal containers [1], 

and a segmentation and packaging plan for reactor vessel 

and reactor vessel internals of Kori unit 1 has been 

proposed in a more comprehensive perspective [2].  

In order to reduce the storage cost of radioactive 

wastes in the disposal facility, it is desirable to maximize 

the volume utilization of the disposal containers. The 

components of the nuclear reactors are segmented into 
various number of pieces according to the 

decommissioning plans of nuclear power plants. In past 

decommissioning cases, the number of segments of 

reactor vessels (RVs), for example, varied from 17 to 172 

pieces [2]. Waste pieces cut into smaller sizes were more 

advantageous for packaging with better volume 

utilization [1]. However, few of the prior researches 

discuss optimal packing of segments of reactor 

components. 

On the other hand, finding optimal packing 

arrangements in the enclosed build container has been 

the prime issue in additive manufacturing (AM), also 
known as 3D printing. The primary goal of AM is to 

maximize build volume utilization, which is essentially 

the same goal as packing segments of reactor 

components. One of the dominant strategies for packing 

problems in AM has been the deepest bottom left with 

fill (DBLF) heuristic combined with genetic algorithm 

(GA) [3]. 

This study proposes a packing placement design 

method of waste segments from nuclear reactor 

components by applying a hybrid genetic algorithm [4-6] 

for cuboidal disposal containers. 
 

2. Packing placement design method 

 

2.1 Problem Objective 

 

The packing optimization problem can be formulated 

as a three-dimensional irregular packing problem, which 

is a combinatorial optimization problem where a set of 

arbitrary volumetric items must be placed into the given 

containers in such a way that the total empty space is 

minimized. This will lead to minimizing the number of 
containers to accommodate the given segments, which 

can be translated as the minimum number of containers 

to be stored in the disposal facility. 

 

2.2 Hybrid genetic algorithm (HGA) method 

 

HGA is a hybridization of GA and some problem- 

dependent heuristics. DBLF [4] was adopted as the 

heuristic for this packing problem.  The HGA in this 
study uses a diploid representation of individual boxes to 

be packed, where one chromosome denotes the packing 

sequence of boxes and another chromosome denotes the 

rotations of the corresponding boxes, and DBLF finds 

the placing positions of boxes in the container such that 

each pair of packed boxes do not overlap. For applying 

DBLF algorithm, segments are modeled in the STL file 

format and enclosed by orthogonal bounding boxes. Fig. 

1 shows the overall flowchart of the method, and some 

details about the algorithm are described in the following 

subsections. 

 

 
Fig. 1. Overall flowchart of packing placement design. 

 

2.2.1. Deepest bottom left with fill (DBLF) heuristic. 

Once the sequence of boxes is decided, the initial 

dimensions of box i is (li, wi, hi) in the Cartesian 

coordinate system. Box i can be placed with 6 different 

rotations of ri. The value of ri can be equal to 0, 1, 2, 3, 

4, or 5, and the responding deposited dimensions are (li, 

wi, hi), (li, hi, wi) (hi, wi, li), (wi, li, hi), (wi, hi, li), and (hi, 
li, wi), respectively.  

In the DBLF heuristic, the first step is to generate a 

series of potential positions (PPs) for the boxes to be 

packed. As illustrated in Fig. 2, the initial PP list is 

started with only one position (0, 0, 0). As box i in the 

sequence is placed with its left-bottom-back corner at (xi, 

yi, zi) in the container, new PPs are generated and added 

in the list. Two PPs are generated by projecting (xi+Δ𝑥, 

yi, zi) and (xi, yi+Δ𝑦, zi) on the boxes between the bottom 

of the container and box i or on the container bottom, 
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where Δ𝑥 and Δ𝑦 are the dimensions of the rotated box i 

in the x- and y- directions. If there is more than one box 

under box i, the position is projected on the box that is 

the nearest to box i. The third PP is (xi, yi, zi+𝛥𝑧), where 

Δ𝑧 is the dimension of the rotated box i in the z-direction. 

And an additional position is obtained at (xi+Δx, 0, 0), 

if the current (xi+Δ𝑥) is greater than all the previous 

(x+Δ𝑥) [5]. 

 

 
Fig. 2. Illustration of sequence of boxes and generation of 
potential positions in the container. 

 

In the second step, the positions in the PP list are 

sorted in the deepest-bottom-left order. A box is tried at 

potential positions of the PP list in ascending order, and 

placed in a position, if it does not overlap any other box 

that has been packed into the container and it does not 

penetrate the boundary surfaces of the container. When a 

box is placed at one position, the position is removed 

from the PP list. The placing process terminates when 

either all boxes are placed in the container or the current 

box finds no available positions in the PP list that satisfy 
the above constraints. 

 

2.2.2. Genetic algorithm. As shown in Fig. 3, a 

chromosome is coded with two rows and n columns 

when there are n boxes to be packed. Each gene of the 

chromosome consists of box index and rotation. The 

packed positions are determined by DBLF for the given 

chromosome, where the position of the first box of the 

sequence is (0, 0, 0) as discussed previously. This matrix 

in 5×n completely describes a feasible packing solution 

for a container. 

 
Fig. 3. Illustration of a chromosome and the corresponding 

solution of placed positions. 

 

The initial population of chromosomes is created by 

random permutations of {1, 2, …, n} for sequences and 

all rotations are set to 0. However, to guarantee a certain 

quality of optimization, the boxes with large volumes 

should be packed into the container first and, therefore, 

special chromosomes created by sorting the sequence 

genes in descending orders of volume, length, width, and 

height of boxes are added in the initial population. 

Given the fitness values for the population of the 

chromosomes, surviving chromosomes are selected 

based on the fitness rankings of the chromosomes. Pairs 

of chromosomes among these survivors are designated as 

parents, P1 and P2, for two-point crossover for generating 

children, C1 and C2. In crossover, two cutting sites i and 

j are randomly selected, i < j. Referring to Fig. 4, the 

genes Pl(i) ... Pl(j) are copied into C1(i) ... C1(j). Then, P2 

is swept circularly from the (j+1)-th gene onward to 

complete Cl with the missing genes and Cl is filled 

circularly from the (j+1)-th gene. The other child C2 can 
be obtained in the same way by exchanging the roles of 

P1 and P2.  

 

 
Fig. 2. Concept of crossover operated on a pair of parent 
chromosomes. 

 

After the crossover is executed, a two-step mutation is 

performed. In the first mutation, two random sites i and j 

are selected in C, and then the genes C(i) ... C(j) are 

inversed with probability Pm1. In the second mutation 

step, each rotation of C is changed randomly with 

probability Pm2. 

When the new generation of population is obtained 

through crossover and mutation, DBLF is used to 

determine packing positions and fitness values. Then, the 
surviving chromosomes are selected according to the 

fitness rankings from the extended population that 

include the new and old generations. 

To determine the convergence of the GA loop, the 

degree of convergence is evaluated using the diversity 

index(η), which is defined as follows. 

 

𝜂 =
(𝑓𝑏𝑒𝑠𝑡−𝑓𝑤𝑜𝑟𝑠𝑡)

𝑓𝑏𝑒𝑠𝑡/2
 ,                         (1) 

 

where f indicates the fitness value of the best or worst 

chromosome in the current population. Here, the fitness 

is defined as the volume utilization rate of the container.  

When the diversity index becomes sufficiently small or 

the number of generations reaches the preset limit, GA 
loop is terminated with the final packing solution which 

is the best solution in the population.  

When there are more boxes left after packing a 

container, the same HGA can be repeated for the next 

container with the remained boxes. 

 

3. Numerical Experiments 

 

3.1 Verification of HGA  
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The proposed HGA method was implemented in C++ 

and verified using a known box packing problem with 

the optimal solution of 100% volume utilization [6].  

The population size of chromosomes was selected to 

be 400, and mutation probabilities were set at 0.2 and 

0.02 for Pm1 and Pm2, respectively.  

A perfect packing solution with 100% volume 

utilization has been obtained with several trials of 
random seeds. Fig. 5 shows how the best and worst 

solutions in generations converged into an optimal 

solution. 

 

 
Fig. 5. Convergence results of a known packing problem. 

 

3.2 Preparation of the segment packing test case 

 

The developed method was tested for cutting and 

packing of a sample reactor vessel. An RV model has 

been prepared in STL file format, and subsidiary 
programs have been developed for visualization and 

cutting. 

The RV model was cut into 7 pieces in axial direction 

and then 18 pieces in azimuthal direction, generating 126 

segments that are quite heterogeneous. Fig. 6 shows the 

RV model used and its cut segments. The height of the 

model was set at 200 (unitless) and the used container 

was sized with 60x60x60, each dimension of which was 

determined to be larger than the maximum length of the 

segments. 

 

 
Fig. 6. A sample RV model and its cut segments. 

 

The minimum bounding boxes (MBBs) were sized for 

the resulting segments so that the MBBs have the 

minimum cuboidal volumes encapsulating the 

corresponding segments. Fig. 7 illustrates one of the 

segments shown with MBB oriented in six ways of 

rotation. 

 

 
Fig. 7. Illustration of a segment with six rotations. 

 

3.3 Test Results and Analysis 

 

The population size of chromosomes for the test case 

was also selected to be 400, and mutation probabilities 

were set at 0.2 and 0.02 for Pm1 and Pm2, respectively. 
Fig. 8 shows the convergence results of the developed 

HGA represented in MBB volume utilization. During the 

HGA process, fitness of a solution was evaluated by the 

MBB volume utilization rate, where MBB was specified 

to differentiate it from the volume utilization by 

segments. 

 

 
Fig. 8. Convergence results of the developed HGA. 

 

By applying the HGA process successively, a packing 
placement solution was obtained for the 126 segments. 

The 126 segments were packed in three containers as 

shown in Fig. 9, where numbers of segments packed, 
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MBB volume utilizations, and volume utilizations by 

segments are indicated alongside.   

 

 

 

   
 

Fig. 9. A packing placement solution for the test case. 
 

MBB volume utilizations were over 80% in the first 

and second containers. The volume utilizations by 

segments of the first and second containers were 42.7% 

and 33.7%, respectively, which are generally far better 
than that of packing solutions which could be obtained 

through laborious manual trials. The volume utilization 

by segments is expected to improve towards the MBB 

volume utilization, if cutting is more carefully planned to 

have higher solidity in MBBs. 

The packing solution for the last container was not 

quite optimized by the algorithm, because the container 

volume is sufficiently large compared to the volume sum 

of the remained segments and the fitness value was kept 

constant regardless of the packing placements.  

 

4. Concluding remarks 

 

With the growing interest in the decommissioning of 

nuclear power plants, optimal packing of segments of 

decommissioned reactor components is an imminent 

challenge. This work provides a packing placement 

method for waste segments from nuclear reactor 

components based on a hybrid genetic algorithm.  

The developed packing placement method was 

verified using a known packing problem and tested on a 

sample model of reactor vessel. It was successfully 

demonstrated that the proposed method can provide 

near-optimal packing placement solutions for packing 

problems in the nuclear reactor decommissioning.  

As the packing problems are dependent on the 

decommissioning policy and conditions, the developed 
method is expected to be flexibly applicable for various 

cases of segments with different numbers and sizes and 

various containers, and to provide excellent solution 

guides in packing placement planning for 

decommissioning of nuclear reactors. 
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