Relationship of Project Management Risk and Radiological Safety during the Decommissioning of Nuclear Facilities Gi-Lim Kim* • Hyung-Woo Seo • Ji-hwan Yu Korea Hydro & Nuclear Power (KHNP) Central Research Institute, 70, 1312-gil, Yuseong-daero, Yuseong-gu,

Daejeon, 34101, Republic of Korea * todaylover77@khnp.co.kr

Introduction

The triple constraints of project management - scope, schedule, and cost - are in conflict with each other, and if one thing changes, it affects the other. In addition, the balance between the three factors affects the quality of the project. Project risk management identifies and manages factors that affect project elements to ensure compliance with the quality of the project, and radiation safety management can be viewed as part of project quality management in nuclear decommissioning projects.

Therefore, this study briefly identified the relationship between decommissioning project risk and radiological safety factor.

Methods & Results

Factor 1 : Characteristics of the exposed population Physical status • Gender / Age / Health status / Sensitive groups / Habits Radiological status and characterization Initial condition of facility • Status of waste and materials Factor 2 : Characteristics of the exposure • Site characteristics Distribution of exposures in time and space Number of individuals Definition of the end state of the project End state of Minimum/Maximum/Mean individual dose • Difficulty in achieving the end state decommissioning project Statistical deviations Collective dose associated with ranges of individual doses Likelihood of potential exposure • Waste management policy Management of waste Pre-existing radiological conditions • Waste estimation and characterization and materials • Waste management infrastructure Factor 3 : Social considerations and values Equity Organizational structure Organization and Ability to control •Human resources human resources Sustainability Intergenerational consideration •Cost Finance Individual henefit • Funding

	Tunung	
 Social benefit Level of information/know-ledge held by those exposed Social trust 	Management of contractors and suppliers Contractor and supplier oversight	Interfaces with contractors and suppliers
 Factor 4 : Environmental considerations Impact on fauna and flora Impacts on climate 	 Decommissioning strategy Decommissioning scenarios Technology 	Strategy and technology
Factor 5 : Non-radiation hazards Factor 6 : Technical and economic considerations for protective options	 Laws and regulations Licensing process 	Legal and regulatory framework
 Feasibility Costs Uncertainties 	 Radiological safety Conventional safety Security 	Safety
Factor 7 : Political aspects Factor 8 : Regulatory constraints	Communication Involvement of interested parties	Interested parties

Optimization attribute factors of radiological safety and decommissioning project risk families are similar in most factors.
 The risk management could affect radiological safety during decommissioning.
 The clearer the identified risk prompts, the more detail the factors that need to be considered to optimize radiation exposure.
 When doing optimizing decision, the hazard-related information could be obtained from the safety assessment, and other

information related decommissioning project could be found in the risk assessment register data (e.g. cost-benefit analysis).

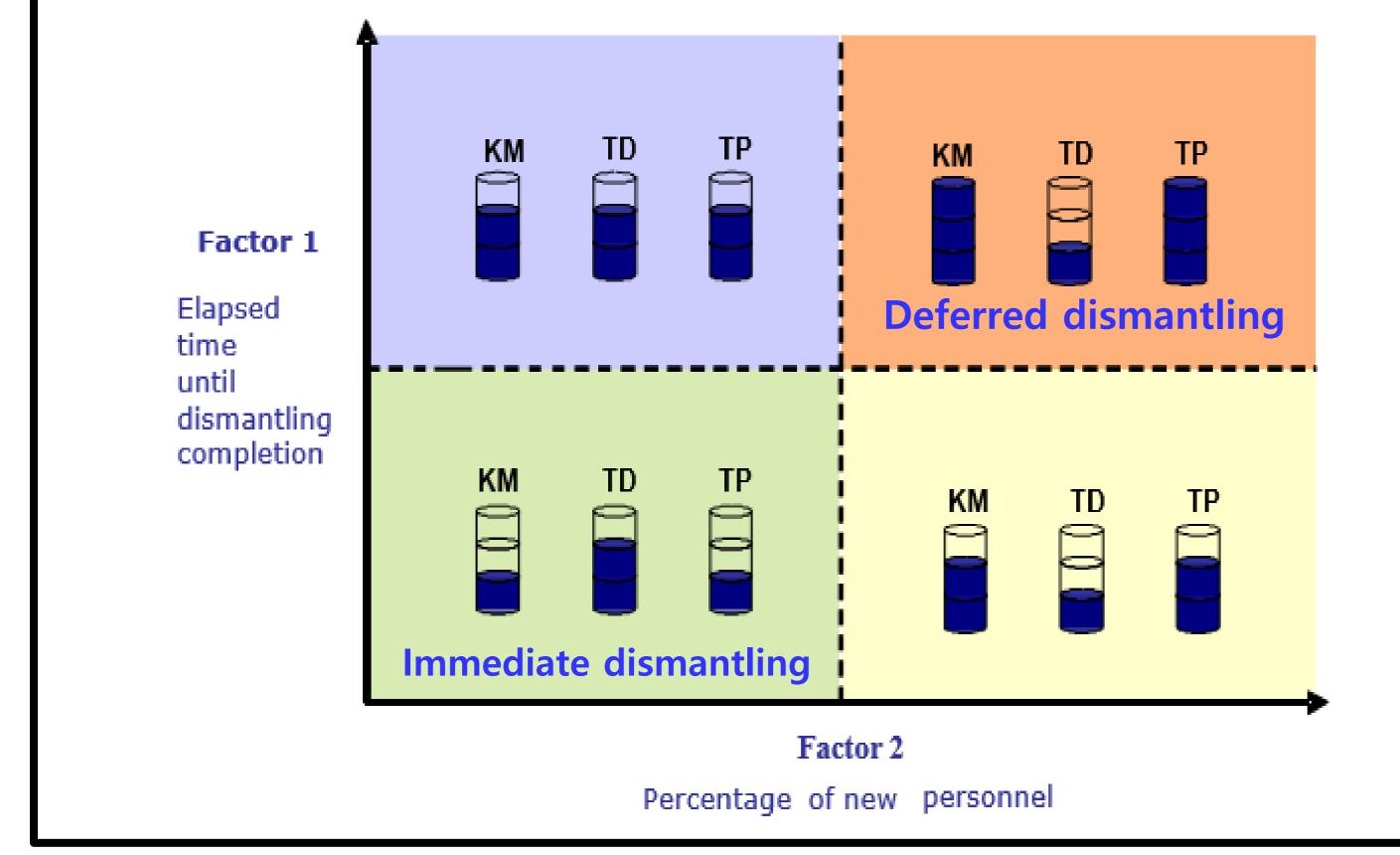
Conclusion

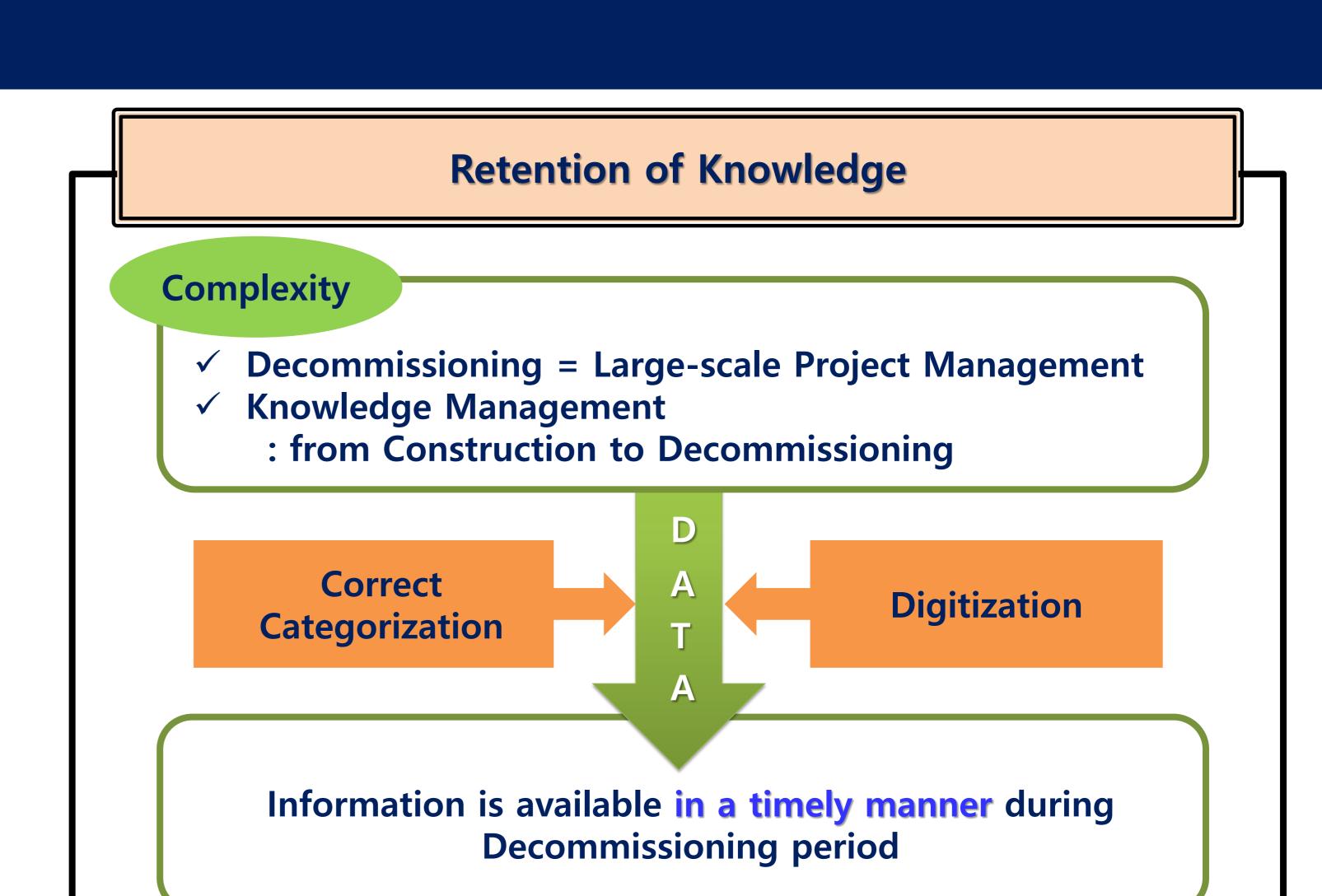
Using the information and experience investigated would manage the possible risks in the decommissioning project. Risk management could also prevent or mitigate the negative effects of unexpected events. However, the decommissioning project is a large-scale and long-term project, making it difficult for the person in charge to consider radiation protection to grasp all of this information alone. Thus, in addition to the exposure environment and technical aspects, project managers could further optimize the exposure of decommissioning workers and improve quality if they constructed an information provision scheme to selectively consider recognizable triggers from the project's risk perspective.

Relationship of Project Management Risk and Radiological Safety during the Decommissioning of Nuclear Facilities Gi-Lim Kim* • Hyung-Woo Seo • Ji-hwan Yu Korea Hydro & Nuclear Power (KHNP) Central Research Institute, 70, 1312-gil, Yuseong-daero, Yuseong-gu,

Daejeon, 34101, Republic of Korea * todaylover77@khnp.co.kr

Introduction


In Korea, Each Nuclear Power Plant(NPP) has a different operating period. According to the energy policy and dismantling strategy, decommissioning schedule of each unit is expected to proceed in various way. At the time of each NPP decommissioning project, proper human resource management and training are needed in consideration of this background. Therefore, this study identified the necessary educational and training requirements for management of


decommissioning personnel.

Methods & Results

Decommissioning Training Requirements

- KM : Retention of knowledge
- TP : Training on aspects relating to the configuration & operating history of the plant
- **TD** : Training on specific aspects of decommissioning

Training on aspects Relating to the Configuration & Operating history of the plant

- ✓ Customized training
 - = Effective tool for communicating information
 - Updated configuration of the facility
 - Installation operational history
 - Inventory of radioactive wastes
 - Inventory of non-radioactive hazardous wastes
 - Updated radiological characterization of the facility

Training on specific aspects of Decommissioning

Decommissioning-specific training

Focused thinking for the decommissioning culture

Decommissioning Feature	Training Emphasis
One-off activities / Use of temporary structures to assist dismantling	Focus on individual tasks & achieving goal
Project completion orientated management objectives	Focus on project management skills & completion culture
Much smaller stable resource pool topped up as/when required using highly mobile contractors	Focus on ensuring and maintaining a reliable supply of fully competent workers & contractor management
Changed nature of radiological risk, industrial risk more significant	Focus to ensure correct blend of training to cater for both industrial & radiological risk issues
Working environment can be uncertain	Focus on pre-job preparations, job hazard analysis & risk assessment

Conclusion

- The requirements for training are variable depending on the life cycle of each NPP and the requirements for manpower input. Therefore, training plans for decommissioning should be established in consideration of their strategies and human resource conditions. It improves the quality of members of the decommissioning project and ensure that they have the capabilities appropriate for the purpose. Proper teamwork formation and communication will improve the quality of the decommissioning project.
- Furthermore, considering the timing of decommissioning projects for each facility, the next nuclear facility project will be more successful if relevant industries continue to manage appropriate knowledge and human resources during the period between individual decommissioning projects.

	: Characteristics Age / Health st	-	d population e groups / Habits	
 Distributi Number Minimum Statistica Collective Likelihoo 	: Characteristics on of exposures of individuals n/Maximum/Mea deviations dose associate d of potential ex ng radiological	in time and sp an individual do d with ranges o oposure	bace	5
	: Social consider	rations and valu	Jes	
IndividuaSocial be	pility erational conside I benefit nefit			
Level of	ntormation/knov	w-ledge held b	y those exposed	

 Factor 1 : Characteristics of the exposed population Gender / Age / Health status / Sensitive groups / Habits Factor 2 : Characteristics of the exposure Distribution of exposures in time and space 	 Physical status Radiological status and characterization Status of waste and materials Site characteristics 	Initial condition of facility
 Number of individuals Minimum/Maximum/Mean individual dose Statistical deviations 	 Definition of the end state of the project Difficulty in achieving the end state 	End state of decommissioning project
 Collective dose associated with ranges of individual doses Likelihood of potential exposure Pre-existing radiological conditions 	 Waste management policy Waste estimation and characterization Waste management infrastructure 	Management of waste and materials
 Factor 3 : Social considerations and values Equity Ability to control Sustainability 	Organizational structure Human resources	Organization and human resources
 Intergenerational consideration Individual benefit Social benefit 	•Cost •Funding	Finance
 Level of information/know-ledge held by those exposed Social trust 	 Management of contractors and suppliers Contractor and supplier oversight 	Interfaces with contractors and suppliers
 Factor 4 : Environmental considerations Impact on fauna and flora Impacts on climate 	 Decommissioning strategy Decommissioning scenarios Technology 	Strategy and technology
Factor 5 : Non-radiation hazards	•Laws and regulations •Licensing process	Legal and regulatory framework
Factor 6 : Technical and economic considerations for protective options Feasibility Costs Uncertainties	 Radiological safety Conventional safety Security 	Safety
Factor 7 : Political aspects Factor 8 : Regulatory constraints	Communication Involvement of interested parties	Interested parties