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1. Introduction 

 

The trigonal node based Analytic Function Expansion 

Nodal (AFEN) method has been developed to deal with 

the asymmetric heterogeneity inside fuel or reflector 

blocks in the hexagonal reactor core. [1,2]  At first, a 

relatively simple form of the AFEN method was tried, 

considering that the number of nodes increases by six 

times in the trigonal AFEN method compared to the 

hexagonal method. While a more sophisticated AFEN 

method uses additionally nodal unknowns such as the 

corner point fluxes or interface flux moments[3-8], this 

method uses only the neutron flux as the nodal unknown 

per interface. Since the performance of this method has 

been disappointing, we then tried to improve it by adding 

the flux moments only at the hexagonal block interfaces 

as the nodal unknowns. Because it encompasses all the 

nodal unknowns and flux constraints of the hexagonal 

refined AFEN method, the improved method was 

expected to be at least as accurate as the hexagonal 

refined AFEN method. However, contrary to this hopeful 

expectation, this method showed the accuracy of the 

simple trigonal AFEN method tried earlier rather than 

that of the hexagonal refined AFEN method. 

Although inefficiency of the AFEN expansion 

function in representing the neutron flux distribution in a 

trigonal node is suspected to cause the inaccuracy of the 

tried trigonal AFEN methods, it is extremely 

burdensome to elucidate and overcome the obvious 

reason. Note that computation speed of the trigonal 

methods is already significantly slow by increasing the 

number of nodal unknowns several times compared to 

the hexagonal refined AFEN method. As recommended 

in Reference 2, we propose a global-local iteration 

method to handle the heterogeneity inside hexagonal 

blocks alternatively. In this method, the trigonal nodal 

method, along with the hexagonal nodal method 

constitutes an iterative process in which the trigonal 

nodal method solves a single asymmetrically 

heterogeneous hexagonal block with the boundary 

condition obtained by the global hexagonal nodal 

calculation and passes the homogenization constants of 

the block to the global hexagonal nodal calculation. 

These constants include the hexagonal interface 

discontinuity factors designed to correct only the effect 

of heterogeneity within the hexagonal node, excluding 

the effect of inaccuracy of the trigonal AFEN method. 

The equivalence theory[9,10] guarantees that this global-

local iteration method treats the heterogeneous 

hexagonal blocks in the global homogeneous calculation. 

Noting that there are a few hexagonal blocks with 

internal heterogeneity in a typical high temperature gas-

cooled reactor (HTGR) core, the increase in computation 

time compared to the hexagonal AFEN case will also be 

negligible. 

 

2. Methodology 

 

Fig. 1 schematically shows the proposed global-local 

iteration scheme. This kind of scheme has proven its 

effectiveness theoretically and practically and is widely 

used in the reactor physics analysis for various purposes. 

In the global stage of our scheme, the whole core 

composed of homogeneous hexagonal blocks is solved 

by the hexagonal AFEN method. A typical inner and 

outer iteration process is used to solve an eigenvalue 

elliptic problem with boundary conditions. At a certain 

moment of the iteration process, the global stage passes 

the interface currents only for the internally 

heterogeneous blocks to the local stage. In the local stage, 

each single block with internal heterogeneity is solved by 

the trigonal AFEN method. The single block is 

heterogeneous, i.e. consists of trigonal nodes with 

different cross-sections. Given the fixed boundary 

currents, this problem becomes a fixed source elliptic 

problem. Once the problem is solved by the trigonal 

AFEN method, the flux weighted cross-sections and the 

interface discontinuity factors for the hexagonal block 

are evaluated and passed to the global stage. 

 

 
Fig. 1.  Global-local iteration scheme 

 

Using the hexagonal block cross-sections weighted by 

the flux shape calculated in the local stage and the 

discontinuity factors defined by the ratio of the interface 

flux calculated in the local stage to that calculated by the 

global stage, the equivalence theory[9,10] guarantees 

that the flux solution of the global stage shall be 

equivalent to the flux solution if we solve the global core 

by the local method. However, note that we do not want 

the accuracy of solving the entire core by the local 
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method, the trigonal AFEN method because it is less 

accurate than the global method, the hexagonal AFEN 

method. We need to capture only the effect of 

heterogeneity within the hexagonal block in the local 

stage calculation, discarding the effect of inaccuracy of 

the trigonal AFEN method. This can be done by defining 

the discontinuity factor as the ratio of two interface 

fluxes calculated by the same trigonal AFEN method: 

one for the heterogeneous block and the other for the 

homogeneous block. 

Considering that a HTGR core usually has a few 

heterogeneous blocks, our global-local iteration scheme 

can then maintain the accuracy and the computation time 

of the hexagonal AFEN method. 

 

2.1   Hexagonal AFEN method for global core problem 

 

The hexagonal AFEN method to solve the global 

whole core problem is the response matrix method based 

on the refined AFEN method that uses both the partial 

current and the partial current moment as the nodal 

unknown per interface. The step function is used in 

defining the interface partial current moment. The 

excellent accuracy and efficiency of this method is well 

documented in References 4 and 8. 

This method is well described in References 4 and 8 if 

the discontinuity factors are not involved. We explain 

here how to implement the discontinuity factors to the 

method. 

Assuming that the net current at the interface s of a 

hexagonal node in Fig. 2 is defined in the direction 

outgoing from the node, the heterogeneous partial 

currents are given by 

𝒋𝑠
out =

1

2
𝑱𝑠 +

1

4
𝝓𝑠  ,    𝒋𝑠

in = −
1

2
𝑱𝑠 +

1

4
𝝓𝑠               (1)  

 
Fig. 2. Hexagonal node 

 
Their homogeneous partners are given by 

𝒋𝑠̂
out =

1

2
𝑱𝑠 +

1

4
𝝓̂𝑠 ,    𝒋̂𝑠

in = −
1

2
𝑱𝑠 +

1

4
𝝓̂𝑠              (2) 

where the symbol hat ^ indicates a homogeneous 

quantity and the fact that the homogeneous current 

preserves the heterogeneous current due to the 

equivalence theory[9,10] is reflected. Note that the 

discontinuity factor is defined by 

𝒇𝑠 =
𝝓𝑠

𝝓̂𝑠
                                       (3) 

Then the homogeneous partial currents become 

𝒋𝑠̂
out = 𝑱𝑠 +

1

4

𝝓𝑠

𝒇𝑠
 ,    𝒋𝑠̂

in = −
1

2
𝑱𝑠 +

1

4

𝝓𝑠

𝒇𝑠
              (4) 

The homogeneous response matrix equation is given by 

𝒋𝑠̂
out = 𝐑̂ 𝒋̂𝑠

in                                   (5) 

Finally, the heterogeneous response matrix equation is 

obtained by solving Eqs. (1), (4) and (5) for 𝒋𝑠
out by 

eliminating 𝑱𝑠, 𝝓𝑠, 𝒋̂𝑠
in, and 𝒋𝑠̂

out. 

𝒋𝑠
out = 𝐑 𝒋𝑠

in                                   (6) 

where the heterogeneous response matrix R is given by 

𝐑 = {𝒇𝒔 + 𝟏 + (𝒇𝒔 − 𝟏)𝑹̂}−𝟏{𝒇𝒔 − 𝟏 + (𝒇𝒔 + 𝟏)}𝑹̂ (7) 

We will use the simple trigonal AFEN method as the 

solver for the local single block problem which does not 

have the discontinuity factor for the flux moment 

because the flux moment is not defined in the method. In 

this case, we will take a look at which discontinuity 

factor to use for the flux moment in the global calculation. 

We define two half interface fluxes at the interface s in 

Fig. 2 as follows:  

𝛟̂𝐵 =
2

ℎ
∫ 𝛟(𝑥𝑠 , 𝑦)

0

−
ℎ

2

𝑑𝑦      𝛟̂𝑇 =
2

ℎ
∫ 𝛟(𝑥𝑠 , 𝑦)

ℎ

2
0

𝑑𝑦 (8) 

Then, the interface flux moment defined with the step 

weighting function that alternating sign across y=0 

becomes 

𝛙̂𝑠 =
1

ℎ
(∫ 𝛟(𝑥𝑠 , 𝑦)

1

2
𝟎

𝑑𝑦 − ∫ 𝛟(𝑥𝑠, 𝑦)
𝟎

−
ℎ

2

𝑑𝑦) =
𝛟̂𝑇−𝛟̂𝐵

𝟐
 (9) 

Similarly, the interface flux becomes the arithmetic mean 

of  and B. We assume that 

𝐟𝑠 =
𝛟𝑠

𝛟̂𝑠
=

𝛟𝑇

𝛟̂𝑇
=

𝛟𝐵

𝛟̂𝐵
                             (10) 

Then,  

𝛙𝑠 =
𝛟𝑇−𝛟𝐵

𝟐
=

𝐟𝑠(𝛟̂𝑇−𝛟̂𝐵)

𝟐
= 𝐟𝑠𝛙̂𝑠             (11) 

Therefore, we can approximately apply the flux 

discontinuity factor to the flux moment as well.  

 

2.2   Trigonal AFEN method for local block problem 

2.2.1 Response matrix of trigonal AFEN method 

 

We introduced two trigonal AFEN methods in our 

previous works: a simple one[1] and a refined one[2]. 

The method we chosen to solve the local single 

heterogeneous hexagonal block problem is the simple 

trigonal AFEN method, because even the simple method 

is not much less accurate than the refined one. 

 
Fig. 3. Trigonal node 

 
The single hexagonal block problem with the net 

current boundary conditions on the outer interfaces is a 

fixed source elliptic problem. This problem is divided 

into six trigonal nodes with different cross-sections and 

solved by the response matrix method based on the 

trigonal AFEN method. 
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The procedure to derive the response matrix for a 

trigonal node in Fig. 3 was well described in Reference 

1. Here, we summarize the procedure shortly. 

The intranodal flux expansion function which is 

symmetric to three coordinates in Fig. 3 and harmonious 

to the even and odd basis functions is given by 

𝛟𝒔(𝒙, 𝒚) =

{2 cosh (
√𝚲

2
𝑥) cosh (

√3𝚲

2
𝑦) + cosh(√𝚲𝑥)} 𝐀𝜃

+ {sinh (
√𝚲

2
𝑥) cosh (

√3𝚲

2
𝑦) + sinh(√𝚲𝑥)} 𝐀𝜀

−3 cosh (
√𝚲

2
𝑥) sinh (

√𝟑𝚲

2
𝑦) 𝐀𝜒

    (12) 

where A, A and Aare the three transformed 

coefficients resulted from the direction decoupling 

transformation described in Reference 1. The transformed 

nodal unknowns are defined as follow in this transformation: 

𝛟𝜃 =
𝛟𝑥+𝛟𝑢+𝛟𝑝

𝟑
− 𝛟̅, 𝛟𝜀 =

𝟐𝛟𝑥−𝛟𝑢−𝛟𝑝

𝟑
, 𝛟𝜒 =

𝛟𝑢−𝛟𝑝

𝟑
   (13) 

𝐉𝜃 =
𝐉𝑥+𝐉𝑢+𝐉𝑝

𝟑
,   𝐉𝜀 =

𝟐𝐉𝑥−𝐉𝑢−𝐉𝑝

𝟑
,   𝐉𝜒 =

𝐉𝑢−𝐉𝑝

𝟑
      (14) 

We can get the following form of relationship between 

the transformed flux and the transformed current by 

expressing both physical quantities into the expansion 

coefficients and eliminating the coefficients. 

𝛟𝛼 = 𝐓𝛼𝐉
𝛼

,      𝜶 = 𝜽, 𝜺 or 𝝌                     (15) 

where T = T fortunately. Similarly to Eq. (13) or (14), 

we define the transformed partial currents:  

𝐣𝜃
𝑓

=
𝐣𝑥
𝑓

+𝐣𝑢
𝑓

+𝐣𝑝
𝑓

𝟑
−

𝛟̅

𝟒
, 𝐣𝜀

𝑓
=

𝟐𝐣𝑥
𝑓

+𝐣𝑢
𝑓

+𝐣𝑝
𝑓

𝟑
, 𝐣𝜒

𝑑 =
𝐣𝑢
𝑓

−𝐣𝑝
𝑓

𝟑
, 𝑓 = 𝑖𝑛 or 𝑜𝑢𝑡  (16) 

The typical following relationship between the partial 

currents, flux, and net current still holds for the 

transformed system:  

 𝑱𝜶 = 𝐣
𝜶
𝒐𝒖𝒕 − 𝐣

𝜶

𝒊𝒏
,   𝛟

𝜶
= 𝟐(𝐣

𝜶
𝒊𝒏 + 𝐣

𝜶
𝒐𝒖𝒕), 𝜶 = 𝜽, 𝜺 𝐨𝐫 𝝌  (17) 

Substituting these relationship into Eq. (15) and solving 

for the transformed outgoing partial current, we finally 

obtain the response matrix in the transformed system as 

follows, 

 𝐣𝜶
𝒐𝒖𝒕 = 𝐑𝜶𝐣𝜶

𝒊𝒏, 𝜶 = 𝜽, 𝜺 𝐨𝐫 𝝌                  (18) 

where R = - (2I - T) -1 (2I + T). Again, R = R because 

T = T. The interface outgoing partial currents are 

inversely transformed as follows: 

𝐣𝑥
𝑓

= 𝐣𝜃
𝑓

+  𝐣𝜀
𝑓

+
𝛟̅

𝟒
, 𝐣𝑢

𝑓
= 𝐣𝜃

𝑓
−  

𝐣𝜀
𝑓

+3𝐣𝝌
𝑓

2
+

𝛟̅

𝟒
, 𝐣𝑝

𝑓
= 𝐣𝜃

𝑓
−  

𝐣𝜀
𝑓

−3𝐣𝝌
𝑓

2
+

𝛟̅

𝟒
(19) 

Given the interface incoming partial currents of a 

trigonal node in the hexagonal block, the interface partial 

currents going out of the node can be calculated by the 

response matrix Eq. (18). Two of them (let say 𝐣u
out and 

𝐣p
out) on the interfaces inside the hexagonal block become 

the partial currents coming into its neighboring nodes. 

The other one ( 𝐣x
out ) on the outer interface of the 

hexagonal node is subtracted by the net current given as 

a boundary condition to yield the partial current coming 

from that outer interface: 

 𝐣𝒙
𝒊𝒏 = 𝐣𝒙

𝒐𝒖𝒕 − 𝑱𝒙                          (20) 

This constitutes an iterative process to be solved for the 

partial currents on the interfaces inside of the hexagonal 

block. There is only an inner iteration involved because 

the problem is a fixed source elliptic one. 
 
2.2.2 Equivalence theory parameters for global core problem 
 
Once the iteration to solve the local single block problem 

is converged, the equivalence theory parameters to be 

passed to the global core problem are evaluated. The flux 

weighted cross-sections for the hexagonal block are 

calculated by 

 𝚺 =
∑ 𝚺𝒊𝝓𝒊

𝟔
𝒊=𝟏

∑ 𝝓𝒊
𝟔
𝒊=𝟏

                               (21) 

where the summation operator  runs over all the six trigonal 

nodes numbering from 1 to 6 in the hexagonal block. 

The flux discontinuity factor in an outer interface s of 

the hexagonal block is given by the definition Eq. (3). 

The heterogeneous flux in the numerate of this definition 

is indisputably the flux calculated from the local single 

block problem. The equivalence theory[9,10] guarantees 

that the use of the interface flux of the global calculation 

as the denominator makes the solution of this global local 

iteration scheme equivalent to the solution calculated for 

the global whole core by the local method. This is why a 

lot of global-local iteration schemes are used to 

accelerate a high-order accurate but slow method by a 

low-order rough but fast one. 

In our case, the accuracy of the local method i.e. the 

trigonal AFEN method is inferior to that of the global 

method i.e. the hexagonal AFEN method. A global-local 

iteration scheme applied in the above way will give the 

poor accuracy of the trigonal AFEN method as shown in 

References 1 and 2. Recalling that our purpose is not to 

improve the accuracy of the hexagonal AFEN method 

but to extend its capability to handle heterogeneous 

hexagonal nodes each of which are composed of six 

different trigonal nodes, we take the denominator of the 

definition Eq. (3) to be the interface flux calculated for 

the single homogeneous hexagonal block with the cross-

sections of Eq. (21) by the same method to the local 

method i.e. the trigonal AFEN method. Of course, the 

boundary conditions to be applied to calculate the 

denominator are also same to those to calculate the 

numerator. The only difference between the two single 

bock problems is that one is heterogeneous and the other 

is homogeneous. Therefore, the flux discontinuity factor 

allows the hexagonal AFEN method to correct only the 

effect of intra-nodal heterogeneity without losing 

accuracy. In addition, there is no need to perform the 

local stage calculations for the blocks without 

heterogeneity. 

 

3. Numerical Results and Discussion 

 

The intra-block asymmetric heterogeneity occurs in the 

HTGR core when control rods are inserted asymmetrically 

into a hexagonal block. Control rods are usually not 

designed to be inserted into the fuel blocks during normal 

operation due to very high temperature in the active core. 

Instead, they are inserted into the reflector blocks to control 

the reactivity during normal operation. Of course, even in 

the fuel block, heterogeneity may occur due to the large 

guide hole into which the control rod is inserted for 

shutdown. However, such heterogeneity can be handled by 

the conventional block homogenization method, because 

heterogeneity due to a water-free guide hole is not serious. 

The ability of the global-local iteration scheme proposed 

in this paper to deal with heterogeneity caused by the control 
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rods insertion in the HTGR core was verified by solving the 

modified MHTGR-350 problem which was also used in 

References 1 and 2 as a benchmark problem. The 

modification was done to simulate the situation where the 

control rods are inserted into a reflector block. The control 

rods are assumed to be inserted into the reflector block 

shaded in Fig. 4. Asymmetrical insertion of control rods are 

simulated by increasing the absorption cross-sections of two 

trigonal nodes of the reflector block facing the active core 

by 50 percent. Although not necessary, the absorption cross-

sections of two trigonal nodes facing outside the core are 

decreased by 50 percent to keep balance with the original 

MHTGR-350 problem. 

In Fig. 4, the assembly-wise relative powers of the 

global-local iteration scheme and the trigonal AFEN 

method were compared with those of the fine mesh finite 

difference method (FDM). The side-length of a trigonal 

mesh in the reference FDM calculation is only 0.325 cm. 

The local calculations were performed just once after the 

global iteration was converged with 10-7 of the 

multiplication error criterion. As shown in the figure, the 

global-local iteration scheme showed almost the same level 

of accuracy as the hexagonal refined AFEN method. This is 

not surprising in light of the limited use of the local method, 

the trigonal AFEN method, to capture only the effect of 

heterogeneity of heterogeneous blocks.  

 

 
Fig. 4. Results of MHTGR-350 benchmark problem (

𝟏

𝟏𝟐
 core). 

We compared the trigonal node average fluxes collapsed 

into one group from ten groups in the block where control 

rods are assumed to be inserted in Fig. 4. The global-local 

iteration scheme almost eliminates the errors of trigonal 

AFEN method in the heterogeneous block where the local 

trigonal AFEN calculation is performed. This shows that the 

discontinuity factor we defined corrects only the 

inhomogeneity inside the block, excluding the effect caused 

by the inaccuracy of the trigonal AFEN method. The 

equivalence theory[8,10] which proves theoretically that the 

global calculation can reproduce the physical quantities of 

the local calculations with, for example, the form functions 

defined similarly  to Eq. (3) is numerically confirmed by 

showing that the trigonal node average fluxes of the global-

local iteration scheme agree well with those of the fine mesh 

FDM reference calculation.  
 

4. Conclusions 
 

In order to treat the asymmetric heterogeneity within 

hexagonal blocks in the HTGR core, two trigonal AFEN 

methods were previously tried. [1,2]  The first tried 

method is a relatively simple one which uses only the 

neutron flux as the interface unknown while the second 

tried method is a more sophisticated one which uses the 

flux moment additionally to the flux. Although the 

number of nodal unknowns increases several times in the 

two AFEN methods, they did not show better accuracy 

compared to the hexagonal refined AFEN method. 

In this paper, the hexagonal refined AFEN method, 

along with the trigonal AFEN method, constitutes a 

global-local iteration method that guarantees success 

without failure due to the equivalence theory[9,10]. In 

this method, the hexagonal refined AFEN method 

performs the global whole core calculation with 

maintaining its original accuracy and computing speed. 

The trigonal AFEN method performs a pair of 

heterogeneous and homogeneous calculations for a local 

single block and computes the equivalence theory 

parameters that correct only the effect of heterogeneity 

of the block. A benchmark test against the MHTGR-350 

problem yielded the theoretically expected results for 

this global-local iteration scheme. 
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