Application of Multi-Hole Structures to the HANARO Irradiation Capsule Kee-Nam Choo(knchoo@kaeri.re.kr), Seong-Woo Yang, Seng-Jae Park, Yoon-Taek Shin Korea Atomic Energy Research Institute

## Introduction

 HANARO irradiation capsules have been most actively used for the irradiation of nuclear materials. Due to recent shutdowns of reactor for a long time, <u>a number of user requests for neutron irradiation testing</u> <u>have accumulated at HANARO</u> these days. In this paper, <u>the progress and status of a development of a</u> <u>multi-hole structured capsule</u> to use a cost-expensive irradiation capsule effectively are described.

# HANARO Irradiation Capsule Systems



### Cross sections of the irradiation capsules having different specimen-hole designs irradiated at HANARO





# Neutron irradiation capsules having multi-hole structures irradiated at HANARO

| Capsule | Irradiation<br>Condition | Specimen /<br>Design  | Irradiation<br>Temp. |  |
|---------|--------------------------|-----------------------|----------------------|--|
| 01M-05U | 24MW CT                  | Zr, Ti alloy / 6 hole | 280~350°C            |  |
| 05M-07U | 30MW CT                  | Zr, Ti alloy / 6 hole | 292~344°C            |  |
| 16M-02K | 30MW CT                  | ARAA (Fe) / 6 hole    | 300~329°C            |  |
| 04M-22K | Out-pile test            | STS (Fe) / 5 hole     | _                    |  |
| 05M-06K | Out-pile test            | STS (Fe) / 5 hole     | _                    |  |





#### Temperatures of the 16M-02K capsule at 30 MW power

\* ARAA: Advanced Reduced-Activation Alloy

### 1) Design history of a specimen allocation

- 1) <u>A typical HANARO irradiation material capsule</u> consists of three main parts: a protection tube (5 m), a guide tube (9.5 m), and the capsule's main body including specimens.
- 2) The irradiation specimens are generally located in the center of the standard irradiation capsule. However, <u>multi-hole designs of the specimens</u> have been frequently adopted in several capsules to increase an economic efficiency of the volume or to improve the uniformity of specimen temperature at HANARO.
- 3) Although a lot of 4-hole structured capsules have been successfully irradiated at HANARO, <u>5-hole and 6-hole structured capsules were scarcely tested</u>. Therefore, <u>the safety of those multi-hole capsules was not fully proved</u>.
- 2) Temperature analysis of the 16M-02K capsule having a 6-hole design

| Stage    |      | GENGTC  |         | ANSYS   |         | Measured* |           |
|----------|------|---------|---------|---------|---------|-----------|-----------|
|          | IC   | He 1atm | 0.4K He | He 1atm | 0.4K He | He 1atm   | He 40torr |
| 1        | TC1  | 201     | 281     | 198     | <370    | 222       | 338       |
|          | TC2  | 201     | 281     | 198     | <370    | 214       | 332       |
|          | TC3  | 230     | 312     | 204     | <370    | 220       | 324       |
|          | TC4  | 230     | 312     | 204     | <370    | 215       | 310       |
| 2 T<br>T | TC5  | 226     | 296     | 206     | <441    | 218       | 312       |
|          | TC6  | 243     | 305     | 220     | <441    | 224       | 313       |
| 3        | TC7  | 245     | 303     | 282     | 369     | 230       | 334       |
|          | TC8  | 245     | 303     | 282     | 369     | 232       | 337       |
|          | TC9  | 265     | 329     | 274     | 369     | 231       | 311       |
|          | TC11 | 265     | 329     | 274     | 369     | 225       | 288       |
| 4        | TC10 | 251     | 311     | 235     | <369    | 242       | 315       |
|          | TC13 | 241     | 303     | 217     | <370    | 239       | 299       |
| 5        | TC12 | 233     | 300     | 211     | <370    | 227       | 302       |
|          | TC14 | 206     | 282     | 187     | <370    | 221       | 300       |

1) A new capsule (16M-02K) having a 6-hole specimen allocation was designed, fabricated, and irradiated for an evaluation of the neutron irradiation properties

- of the Advanced Reduced Activation Alloy (ARRA) of a Fusion reactor.
- 2) The irradiation temperature of the specimens was preliminary analyzed by using the GENGTC and compared to the results by the ANSYS codes.
- 3) The temperature of the ARAA specimens was stably controlled in the range of 295-337°C during a reactor operation cycle(100th cycle) at HANARO.
- 4) Considering the stable behavior of the specimen temperatures and design experience of the capsule, the 6-hole design could be safely applicable for an irradiation testing of the most Fe and Zr-based nuclear materials at HANARO.

### Conclusion

- ✓ <u>The progress and status of a development of a multi-hole irradiation capsule at HANARO</u> to increase an economic efficiency of the volume or to improve the uniformity of specimen temperature were summarized.
- The 6-hole structured capsule of the 16M-02K was designed, fabricated, and successfully irradiated for an evaluation of the neutron irradiation properties of the ARRA of a Fusion reactor.
- Considering the stable behavior of the specimen temperatures and design experience of the capsule, <u>the 6-hole design could be safely applicable for an irradiation testing of the most Fe and Zr-based nuclear</u> <u>materials at HANARO</u>.



Korean Nuclear Autumn Meeting, 2021