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1. Introduction 
 

Nuclear fuel rods for research reactors used in 
HANARO require a cladding layer surrounding the 
nuclear fuel core to effectively transfer heat generated 
during operation and smooth coolant flow. During 
cladding the fuel core, defects such as surface scratches, 
pinholes, blisters, and dents or a gap between the fuel 
core and the coating layer may occur. The flaws present 
in the coating layer lead to the leakage of the fissile 
material. The leaked fissile material can migrate into the 
cooling water in research furnace, which causes safety 
problem. Eddy current testing (ECT) should be 
performed to inspect the coating layer defects. 

ECT has been studied and used in the non-destructive 
testing field for defect detection [1-2]. ECT can detect 
various defects that occur in fuel rods as well as clads 
by using multiple frequencies. However, the reliability 
of ECT signal analysis is highly dependent on the 
operator, thus proper signal analysis method is needed 
to secure the high reliability of the test result. 

In this study, deep learning technique is applied to 
improve the reliability of defect inspection results by 
ECT. There is a successful case to introduce deep 
neural networks in pipe wall-thinning measurement by 
ECT [3]. In this study, the depth of defects in an 
Al1060 rod was estimated by ResNet18-1D, a variant of 
ResNet18 for time-series data. The average 
performance was compared according to input channel 
(1, 2, 3, 4, 5, 6, 7, 8, and 1~8) and batch size (32, 64, 
128, 256, 512, and 1024). The result shows that 
favorable inspection frequency exists for defect depth 
estimation by ResNet18-1D and it is crucial to choose 
the proper batch size when training small datasets. 

 

2. Experiment 
 

2.1. Specimen 
 

For the standard rod, an AL1060 dummy 
concentrically extruded rod was used. The standard rod 
has artificial defects that enable to calibration of an 
eddy current system [4]. Seven types of notch defects 
were fabricated by electro-discharge machining as 
shown in Fig. 1. The depths of the notches were 100%, 
80%, 60% 40%, 20%, 17%, and 13% of the cladding 
thickness (0.79 mm). 
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Fig. 1 Dimension of the standard defects 
 

2.2. Eddy Current Inspection 
 

Zetec MIZ-27ET and the probe designed for reactor 
fuel rod inspection [1] were used to eddy current 
inspection for the artificial defects. The inspection 
frequencies were 30 kHz, 15 kHz, 6 kHz, and 3 kHz. 
For each frequency, the two-channel signals were 
collected at a rate of 12 inches per second with an 
excitation voltage of 16 V and a sampling rate of 400 
samples per second. The phase angle was set to 40 
degrees at the 100% notch defect signal for each 
channel. The measurement was conducted 98 times. 
 

3. Data Labelling 
 

There are eight types of labels: intact case and seven 
defect cases. Each signal obtained from single 
measurement includes intact parts and seven defect 
parts. A human expert about eddy current signals 
labeled each segment of 150 samples with its 
corresponding defect depth as shown in Fig. 2. 
 

 
Fig. 2 Labels and 8-channel Signals 
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Of the total 1862 segments, 1176 were the intact 
cases and 686 were the defect cases. In the defect cases, 
there were 98 segments of each defect depth. For deep 
learning, the segments were divided into three datasets: 
train, validation, and test (60%, 20%, and 20% 
respectively). Using stratified shuffle split, the 
proportions of labels the same between the datasets. 

 
4. Deep Learning 

 
4.1. Neural Network: ResNet18-1D 
 

The residual network (ResNet) is architecture for 
convolutional neural networks with skip connections. 
The input to a layer is added to the output of the layer 
with the skip connection, which helps to avoid 
banishing gradient problem as well as to train deeper 
networks. That is the reason why ResNet has achieved 
excellent performance on image classification. Since the 
original ResNet18 is designed for image data, two-
dimensional operations of ResNet18 should be replaced 
with one-dimensional operations for signal data as 
shown in Table 1. This variant is called ResNet18-1D in 
this study. Multi-channel signals can be input to 
ResNet18-1D like image data if the signals between 
each channel have a high correlation between channels 
like the red, green, blue channels in the image. In this 
study, the inputs were signals with a length of 150 and 
the output was a floating value for the defect depth. 

 
4.2. Training and Testing 
 

To train ResNet18-1D, mean absolute error was 
adopted as the loss function and Adam optimizer was 
used to minimize the loss.  

 

Table 1 Architecture of ResNet18-1D 
Layer Name Output Shape ResNet18-1D

B x C x 150 input

conv1 B x 64 x 75 [1 x 7 conv, 64, stride 2]

max pooling B x 64 x 38
[1 x 3 max pool, stride 2],

skip connection

conv2_x B x 64 x 38
[1 x 3 conv, 64, stride 1] x 2,

skip connection,
[1 x 3 conv, 64, stride 1] x 2

conv3_x B x 128 x 19

[1 x 3 conv, 128, stride 2],
[1 x 3 conv, 128, stride 1],

skip connection,
[1 x 3 conv, 128, stride 1] x 2

conv4_x B x 256 x 10

[1 x 3 conv, 256, stride 2],
[1 x 3 conv, 256, stride 1],

skip connection,
[1 x 3 conv, 256, stride 1] x 2

conv5_x B x 512 x 5
[1 x 3 conv, 512, stride 2] x 2,

skip connection,
[1 x 3 conv, 512, stride 1] x 2

average pooling B x 512 x 1
skip connection,
[1 x 1 avg pool]

fully connected B x 1 [512 x 1 fully connections]
ouput

※ B: batch size, C: the number of channels  

In the training step, ResNet18-1D was fitted with 
train dataset and evaluated with validation datasets for 
each epoch. The initial learning rate was 0.001 and it 
became halved when the validation loss was not 
updated for more than 5 times. The training was 
stopped when the validation loss was not updated for 
more than 10 times. For a case, the loss and the 
comparison of truth and prediction is shown Fig. 3. 

 
4.3. Results 
 

To compare the performance according to input 
channel (1, 2, 3, 4, 5, 6, 7, 8, and 1~8) and batch size 
(32, 64, 128, 256, 512, and 1024), training and testing 
were conducted 10 times per case. Average 
performance is shown in Fig. 4. Using channels 5 (6 
kHz), 7 (3 kHz), and 8 (3 kHz), the averaged losses 
were lower than the others. Using channel 7 (3 kHz) 
with a batch size of 32, the error was the lowest. In 
terms of batch size, the performance degraded by batch 
size, especially 256 or higher. 
 

 
Fig. 3 Loss and the comparison of truth and prediction 
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32 64 128 256 512 1024

1 1.07 1.17 1.32 1.65 2.42 3.56 1.86

2 1.05 1.01 1.13 1.29 2.05 3.03 1.59
3 1.02 1.02 1.15 1.47 2.40 4.24 1.88
4 1.61 1.80 1.86 2.08 2.71 4.03 2.35
5 0.67 0.75 0.88 1.11 1.90 2.43 1.29
6 2.20 2.56 3.00 3.36 4.16 5.26 3.42
7 0.59 0.61 0.70 1.05 1.81 2.07 1.14
8 0.70 0.76 0.80 1.03 2.13 2.94 1.39
All 1.02 1.20 1.35 2.02 2.54 5.59 2.29

Average 1.10 1.21 1.35 1.67 2.46 3.68

Input
Channel

Batch Size
Average

 
Fig. 4 Errors according to batch size and input channel 

 
5. Conclusions 

 
The depth of artificial notches in an Al1060 rod was 

estimated by ResNet18-1D, a variant of ResNet18 for 
time-series data. The depths of the notches were 100%, 
80%, 60% 40%, 20%, 17%, and 13% of the cladding 
thickness (0.79 mm). Using Zetec MIZ-27ET and the 
probe designed for reactor fuel rod inspection, the raw 
signals were acquired 98 times. A human expert labeled 
each segment of 150 samples with its corresponding 
defect depth. The labeled segments consist of 1176 
intact segments and 98 segments for each defect depth. 
Using stratified shuffle split, the segments were divided 
into three datasets: train, validation, and test (60%, 20%, 
and 20% respectively). Loss function and optimizer 
were mean absolute error Adam, respectively. Learning 
rate decay and early stopping were also adopted. 
Average performance was compared according to input 
channel (1, 2, 3, 4, 5, 6, 7, 8, and 1~8) and batch size 
(32, 64, 128, 256, 512, and 1024). Using the favorable 
channels shows higher performance than that using all 
channels. Using channel 7 (3 kHz) with a batch size of 
32, the error was the lowest. This result shows that 
favorable inspection frequency exists for defect depth 
estimation by ResNet18-1D. The performance degraded 
by batch size, especially 256 or higher. Therefore, it is 
important to choose the proper batch size, especially 
when training small datasets. 
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