# Eddy Current Testing for Research Reactor Fuel Rods via Deep Learning

Hogeon Seo, Yoon-Sang Lee, Kyuhong Lee, Jihyun Jun, Yonggyun Yu\*

Korea Atomic Energy Research Institute \*Corresponding Author: ygyu@kaeri.re.kr



Korea Atomic Energy Research Institute Eddy Current Testing for Research Reactor Fuel Rods via Deep Learning



# 01 Introduction

02 Experiment

**03** Deep Learning

### 04 Results & Conclusions

Korea Atomic Energy Research Institute

Artificial Intelligence Application & Strategy Team

2

# **ECT is needed to inspect the coating layer defects**

Safety problem caused by the flaws in cladding layers can be prevented by ECT





- Nuclear fuel rods for research reactors used in HANARO require a cladding layer
- Cladding surrounds the nuclear fuel core to effectively transfer heat and smooth coolant flow
- The flaws that is present in the coating layer lead to the leakage of the fissile material
- The leaked can migrate into the cooling water in research furnace, which causes safety problem
- Eddy current testing (ECT) should be performed to inspect the coating layer defects

# **Deep learning can improve the reliability of ECT**

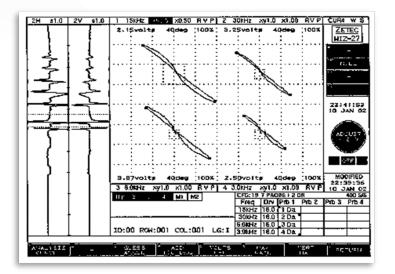


Fig. 2 ECT signals at 30, 15, 6, 3 kHz

- ECT can detect various defects that occur in fuel rods as well as clads by using multiple frequencies
- The reliability of ECT signal analysis is highly dependent on the operator, thus proper signal analysis method is needed to secure the high reliability of the test result
- The reliability of defect inspection results by ECT can be improved via deep learning technique

### **D**<sup>Experiment</sup> **Specimen & eddy current inspection**

Al1060 dummy concentrically extruded rod was used for the standard rod

|             | Α    | В   | С   | D   | Ε   | F   | G   |   |
|-------------|------|-----|-----|-----|-----|-----|-----|---|
| 2           | 100% | 80% | 60% | 40% | 20% | 17% | 13% |   |
| $\subseteq$ | 11   |     |     |     |     |     |     | 5 |
| $\langle$   |      |     |     |     |     |     |     |   |
| (           |      |     |     |     |     |     |     | { |

- Seven types of notch defects were fabricated by electro-discharge machining
- Notch depths were 100%, 80%, 60% 40%, 20%, 17%, and 13% of the cladding thickness (0.79 mm)

#### Zetec MIZ-27ET and the probe designed for reactor fuel rod inspection

- The inspection frequencies were 30 kHz, 15 kHz, 6 kHz, and 3 kHz
- For each frequency, the two-channel signals were collected at 12 in/s with an excitation voltage of 16 V and a sampling rate of 400 S/s
- The phase angle was set to 40 degrees at the 100% notch defect signal
- The measurement was conducted 98 times

#### Korea Atomic Energy Research Institute



Neural network: ResNet18-1D

### A variant of ResNet18-1D

- ResNet: an architecture for CNN with skip connections
- The input to a layer is added to the output of the layer with the skip connection, which helps to avoid gradient vanishing as well as to train deeper networks
- Since ResNet18 is designed for image data, 2D operations of ResNet18 should be replaced with 1D operations for signal data
- The inputs were signals with a length of 150
- The output was a floating value for the defect depth

| Layer Name      | Output Shape | ResNet18-1D                      |  |  |  |
|-----------------|--------------|----------------------------------|--|--|--|
|                 | B x C x 150  | input                            |  |  |  |
| conv1           | B x 64 x 75  | [1 x 7 conv, 64, stride 2]       |  |  |  |
| max pooling     | B x 64 x 38  | [1 x 3 max pool, stride 2],      |  |  |  |
|                 | D X 04 X 30  | skip connection                  |  |  |  |
|                 |              | [1 x 3 conv, 64, stride 1] x 2,  |  |  |  |
| conv2_x         | B x 64 x 38  | skip connection,                 |  |  |  |
|                 |              | [1 x 3 conv, 64, stride 1] x 2   |  |  |  |
|                 |              | [1 x 3 conv, 128, stride 2],     |  |  |  |
| conv3_x         | B x 128 x 19 | [1 x 3 conv, 128, stride 1],     |  |  |  |
| convs_x         | D X 120 X 13 | skip connection,                 |  |  |  |
|                 |              | [1 x 3 conv, 128, stride 1] x 2  |  |  |  |
|                 | B x 256 x 10 | [1 x 3 conv, 256, stride 2],     |  |  |  |
| conv4_x         |              | [1 x 3 conv, 256, stride 1],     |  |  |  |
|                 | D X 230 X 10 | skip connection,                 |  |  |  |
|                 |              | [1 x 3 conv, 256, stride 1] x 2  |  |  |  |
|                 |              | [1 x 3 conv, 512, stride 2] x 2, |  |  |  |
| conv5_x         | B x 512 x 5  | skip connection,                 |  |  |  |
|                 |              | [1 x 3 conv, 512, stride 1] x 2  |  |  |  |
| average pooling | B x 512 x 1  | skip connection,                 |  |  |  |
|                 |              | [1 x 1 avg pool]                 |  |  |  |
| fully connected | B x 1        | [512 x 1 fully connections]      |  |  |  |
|                 |              | ouput                            |  |  |  |

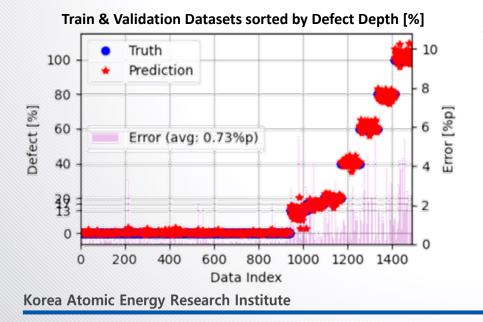
 $\times$  B: batch size, C: the number of channels

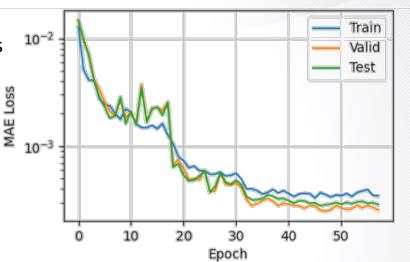
6

**Artificial Intelligence Application & Strategy Team** 

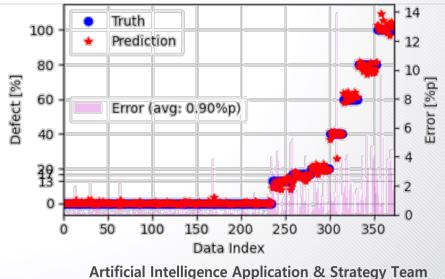


- MAE was adopted as the loss function and Adam optimizer was used to minimize the loss
- LR was 0.001 and it became halved when the validation loss was not updated for more than 5 times
- The training was stopped when the validation loss was not updated for more than 10 times





Test Datasets sorted by Defect Depth [%]



**Results & Conclusions** 

## **4** Favorable frequencies exist for defect depth estimation

### Errors according to batch size and input channel

| Input   | Batch Size |      |      |      |      |      |                    |
|---------|------------|------|------|------|------|------|--------------------|
| Channel | 32         | 64   | 128  | 256  | 512  | 1024 | Average            |
| 1       | 1.07       | 1.17 | 1.32 | 1.65 | 2.42 | 3.56 | 1.86               |
| 2       | 1.05       | 1.01 | 1.13 | 1.29 | 2.05 | 3.03 | 1.59               |
| 3       | 1.02       | 1.02 | 1.15 | 1.47 | 2.40 | 4.24 | <mark>1.8</mark> 8 |
| 4       | 1.61       | 1.80 | 1.86 | 2.08 | 2.71 | 4.03 | 2.35               |
| 5       | 0.67       | 0.75 | 0.88 | 1.11 | 1.90 | 2.43 | 1.29               |
| 6       | 2.20       | 2.56 | 3.00 | 3.36 | 4.16 | 5.26 | 3.42               |
| 7       | 0.59       | 0.61 | 0.70 | 1.05 | 1.81 | 2.07 | 1.14               |
| 8       | 0.70       | 0.76 | 0.80 | 1.03 | 2.13 | 2.94 | 1.39               |
| All     | 1.02       | 1.20 | 1.35 | 2.02 | 2.54 | 5.59 | 2.29               |
| Average | 1.10       | 1.21 | 1.35 | 1.67 | 2.46 | 3.68 |                    |

- To compare the performance according to input channel (1, 2, 3, 4, 5, 6, 7, 8, and 1~8) and batch size (32, 64, 128, 256, 512, and 1024), training and testing were conducted 10 times per case
- Using channels 5 (6 kHz), 7 (3 kHz), and 8 (3 kHz), the averaged losses were lower than the others
- Using channel 7 (3 kHz) with a batch size of 32, the error was the lowest
- In terms of batch size, the performance degraded by batch size, especially 256 or higher
- It is important to choose the proper batch size, especially when training small datasets

Korea Atomic Energy Research Institute

Artificial Intelligence Application & Strategy Team