Paper No.: 21A-145

Studies on Adsorbent Development for the Separation of Ca/Sc

Jun Sig Lee, Ul-Jae Park, Hyemin Jang Korea Atomic Energy Research Institute

Introduction

- ➤ Purpose of Study
 - Develop a proper adsorbent for the separation of scandium and calcium from aqueous solutions
- **≻**Background
 - As a matched pair of radionuclides
 - Sc-44 for PET imaging
 - Sc-47 for therapy
 - Calcium isotopes are target materials of both Sc-44 and Sc-47
 - Proton Irradiation: ⁴⁴Ca(p,n) → ⁴³Sc
 - Neutron Irradiation: ${}^{46}\text{Ca}(n,\gamma){}^{47}\text{Ca} \rightarrow {}^{47}\text{Sc}$
 - Separation technology is required.-> Adsorbent Development

Proposed Adsorbents

- ➤ Silica-SUL (Molar ratio : Si : S = 5 : 1)
 - Sol-gel processed silica having sulfonic acid groups

- Silica-PSO(Molar ratio : Si : P = 5 : 1)
 - Sol-gel processed silica having phosphonic acid groups

Ligand Density of Synthesized Adsorbents (Based on EA results)

	Element Weight % From EA		Ligand Density(mmol/g)	
Adsorbent	С	S	EA*	Mole/Wt*
Silica-Thiol	10.2	6.7	2.1*1	1.9
Silica-SUL	9.0	6.1	1.9*1	N/A
Silica-PSA	14.9	N/A	2.1*2	2.0
Silica-PSO	6.4	N/A	1.8*2	N/A

- * EA: Calculated from the results of elemental analysis for carbon (*1) and sulfur (*2)
- * Mole/Wt: moles of the precursor / weight of resulting adsorbent

FtIR Studies for Adsorbents

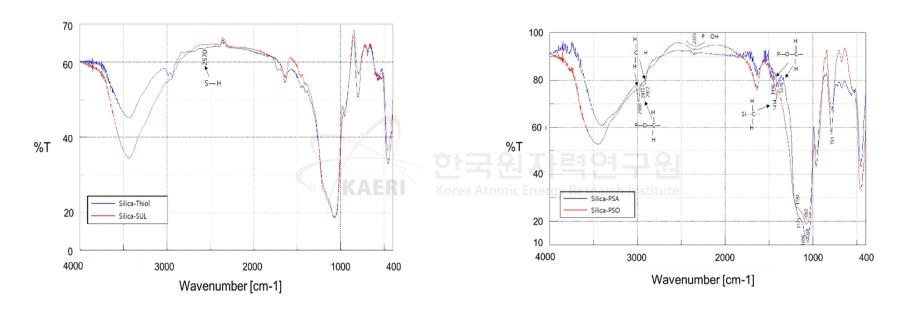


Figure: FtIR spectra of Silica-Thiol and Silica-SUL

Figure: FtIR spectra of Silica-PSA and Silica-PSO

Chemical Speciation of Scandium in Aqueous Solutions

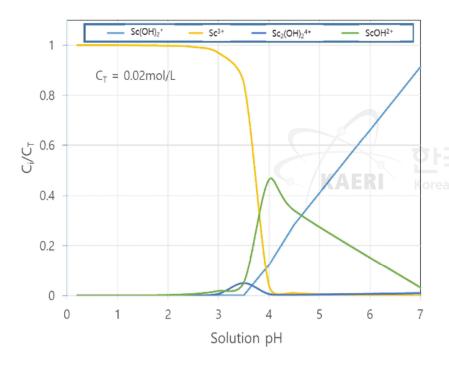


Figure : Chemical Speciation of Scandium in Aqueous Solutions - Calculated by Using MINEQL®

- In the Solution,
 - Calcium exists a billion times more than scandium.
- Calcium Ions?
 - Exist only in the form of Ca²⁺ within the given pH (pH ≤ 7)
- Scandium Ions
 - Oxy-complexes forms when pH ≥ 2
- Required: an adsorbent that has an extreme selectivity on Sc over Ca at a certain solution pH (preferably less than 2).

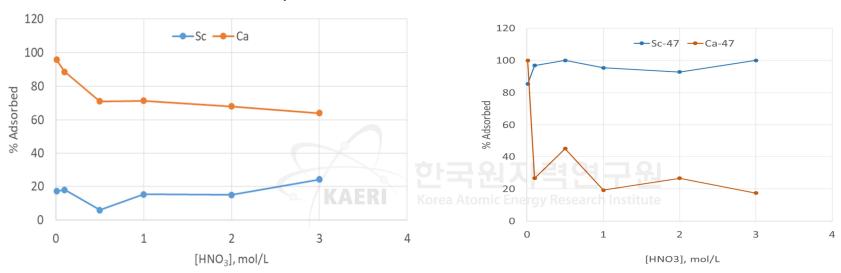
Results of Batch Extraction

Batch Experiments at With Adsorbent, Silica-SUL

Initial Concentration (Sc and Ca both) = 50mg/L

Experimental Conditions at a High Concentration

- Amount of adsorbent/sample = 0.2g
- Volume of solution/sample = 20mL
- Contact time = 3hours
- HNO_3 concentration = varies from 0.001 ~ 3M


Experimental Conditions at a Low Concentration:

Initial Concentrations (Sc & Ca, respectively) = 10 and 220 ug/L

- Amount of adsorbent/sample = 0.25g
- Volume of solution/sample = 25mL
- Contact time = 2hours
- HNO3 concentration = varies from 0.001 ~ 3M
- Radiotracer (Ca-47/Sc-47) was spiked
- Gamma Counting at 154.9keV for Sc-47 and 1297keV for Ca-47

Batch Experiments at With Adsorbent, Silica-PSO

Initial Concentration (Sc and Ca both) = 50mg/L

Initial Concentrations (Sc & Ca, respectively) = 10 and 220 ug/L

Experimental Conditions at a High Concentration

- Amount of adsorbent/sample = 0.2g
- Volume of solution/sample = 20mL
- Contact time = 3hours
- HNO_3 concentration = varies from 0.001 ~ 3M

Experimental Conditions at a Low Concentration:

- Amount of adsorbent/sample = 0.25g
- Volume of solution/sample = 25mL
- Contact time = 2hours
- HNO₃ concentration = varies from 0.001 ~ 3M
- Radiotracer (Ca-47/Sc-47) was spiked
- Gamma Counting at 154.9keV for Sc-47 and 1297keV for Ca-47

Discussion and Conclusions

- Sulfonic acid functionalized silica (Silica-SUL) shows the same trend for the affinity to Sc and Ca with respect to the acid concentration for both tested concentration levels (mg/L and ug/L)
- However, phosphonic acid functionalized silica (Silica-PSO) shows higher affinity for Ca than that for Sc at a high concentration (50mg/L) but reversed at low concentration (ug/L level)
 - Strong binding between phosphonic acid and scandium
 - On the other hand, limited availability of the ligands for trivalent association rather than for divalent association -> Probable reason
- Even though further study is required, Silica-SUL has better characteristics for the separation of Sc and Ca because it has high affinity for Sc and presumably expected a mild stripping condition.

Acknowledgement: Financial support from the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF- 2017M2A2A6A05016598)

