

 KNS 2021 추계학술발표회

 제 4분과 : 핵연료 및 원자력재료, 첨단소재기술

 Zoom Meeting, Oct. 20-22

Effect of Post-Bond Heat Treatment on the Diffusion Bonding Properties of Alloy 800H with Ni-Foil Interlayer

October 22nd, 2021

<u>Taejeong An</u>, Gokul Obulan Subramanian, Changheui Jang*

Nuclear & High Temperature Materials Laboratory Department of Nuclear & Quantum Engineering, KAIST

Contents

- I. Background
- II. Research Objective
- **III. Experimental Procedure**
- **IV. Results**
 - Part I: Effect of Ni-Foil Interlayer on DB
 - Part II: Effect of Post-Bond Heat Treatment

- V. Summary
- **VI.** Further work

Background – PCHE

S.R. Aakre et al., S-CO₂ power cycles symposium (2018) J.K. Min et al., Heat Mass Transfer (2009)

□ Printed-circuit heat exchanger (PCHE)

- Micro-channel heat exchanger
 - Compact & extended surface for high efficiency
- Possible applications
 - Nuclear, fossil, solar power using S-CO₂
- Photo-chemical etching of plates
- Stacking + Diffusion bonding
- Key component
 - Long-term integrity of diffusion-bonded joints is crucial

3

HE type	Maximum pressure (bar)	Maximum temperature (°C)	Effectiveness		
PHE	40	400			
PFHE	120	650	>90		
Spiral	30	400			
Flat tube and fin	200	200			
Tubular (profile)	31	750	<85		
Tubular (mini)	100	730			
PCHE	500	1000	>97		
Ceramic	4	1300			

KAIST

Background – DB

□ Aim of DB process

- Similar to the parent matrix
- Grain boundary migration across the bond-line
- Avoid excessive deformation of joint piece

Key parameters of DB process

- Surface condition
- Temperature, external pressure, time, environment

Background – DB

Diffusion bonding of Fe- and Ni-base alloys

- Fe-base alloys : good bond efficiency with grain boundary migration across bond interface
- Ni-base alloys : poor bond efficiency → Premature brittle bond-line fracture

KAIST

Research Objective

Corrosion and mechanical behavior of diffusion-bonded candidate alloys in high temperature S-CO₂ environment

Evaluation of diffusion-bonded

joints for optimizing condition

Fabrication of Multi-Layered

Diffusion-Bonded joints

of candidate alloys

Evaluation of microstructural and mechanical properties of MLDB joints compared to As-received

Evaluation of corrosion resistance of MLDB joints after S-CO₂ exposure (600 °C, 20 MPa, 500 h)

Experimental Procedure

□ Candidate alloy

• Alloy 800H

καις

Diffusion bonding trials using small blocks

Tensile properties (RT & HT) & microstructural analysis

Optimization of DB conditions for each alloy

• Fabrication of multilayer diffusion bond joints using optimized conditions

DB conditions of candidate alloys

Alloy	Temperature (°C)	Pressure (MPa)	Duration time	Cooling	Surface condition	Interlayer	Post-bond heat- treatment (PBHT)
800H	1150	10	Hold temperature (10 min) + Pressure (60 min)	Furnace (vacuum) cooling	Mechanical		X
					Polishing (SiC grit #5000)	Ni-foil (0, 1, 3, 5 μm)	1100 °C, 10 h (Air cooling) <ht-a condition=""></ht-a>
							1200 °C, 1 h (Air cooling) <ht-b condition=""></ht-b>

Nuclear & High Temperature Materials Lab.

16

Results – Effect of Ni-Foil Interlayer on DB

□ Mini tensile test results of DB 800H : Thickness of Ni-foil interlayer

- DB conditions
 - 1150 °C, 10 MPa, 1 h, Ni interlayers (0, 1, 3, 5 μm)
- No Ni interlayer & 1 μm Ni interlayer & 3 μm Ni interlayer
 - Brittle failure at bond-line & poor elongation compared to as-received condition
- 5 µm Ni interlayer
 - Similar tensile property compared to as-received condition

Results – Effect of Ni-Foil Interlayer on DB

Microstructures of DB 800H : Thickness of Ni-foil interlayer

- No Ni interlayer & 1 µm Ni interlayer
 - Ti-rich carbide formation at bond interface \rightarrow limit grain boundary migration
- 3 & 5 µm Ni interlayer
 - Suppress carbide formation at bond-line → grain boundary migration
 - Residual Ni at interlayer region → remove by applying PBHT

Results – Effect of Ni-Foil Interlayer on DB

TEM analysis of DB 800H (5 µm)

- Ni-foil interlayer (5 µm) significantly suppressed precipitate formation at DB line
- Still, small precipitates along Ni-foil / matrix interface (few hundreds of nm in size)
 - Al-rich oxides & Ti-rich carbides

0.6

Results – Effect of PBHT on DB

Selection of the PBHT conditions using Thermo-Calc software

- Dissolution temperature of precipitates using for chemical composition of alloy 800H
 - Phase stability calculation of the TiC precipitates in Alloy 800H
 - Diffusion of residual Ni and dissolution of Ti-rich precipitates at the bond-line

□ To induce the grain boundary migration

- Consider the grain growth and residual Ni on bond-line →HT-A condition
- Consider the grain growth migration and fraction of TiC precipitates→HT-B condition

□ HT-B condition : 1200 °C, 1 h

HT-A condition : 1100 °C, 10 h

Results – Effect of PBHT on DB

Mini tensile test results of DB + PBHT (HT-A)

- Slightly decrease the tensile property
 - UTS (RT & 650 °C), Elongation (RT)
- Improve the elongation at 650 °C applied the PBHT

Microstructures of DB + PBHT (HT-A)

- Growth the grain size
- Diffusion of residual Ni
- Still, small precipitates along the interface
- → More grain boundary migration

12

Results – Effect of PBHT on DB

□ Mini tensile test results of DB + PBHT (HT-B)

- Slightly decrease the tensile property
 - UTS (RT & 650 °C), Elongation (RT)
- Improve the elongation at 650 °C applied the PBHT

Microstructures of DB + PBHT (HT-B)

- Growth the grain size
- Partial diffusion of residual Ni
- Disappear the Ni-foil bond line
 - Dissolution of Ti-rich precipitates on bond line
- \rightarrow Smooth the grain boundary migration

13

Summary

Corrosion and mechanical behavior of diffusion-bonded candidate alloys in high temperature S-CO₂ environment

- Characterization of diffusion-bonded joints
 - Fe-base alloys : good bond efficiency with grain boundary migration across bond interface
 - Ni-base alloys : poor bond efficiency → Premature brittle bond-line fracture
- Effect of thickness of Ni-foil interlayer (0,1,3,5 μm)
 - No Ni interlayer & 1 µm Ni interlayer
 - □ Brittle failure at bond-line & poor elongation compared to as-received condition
 - 3 & 5 µm Ni interlayer
 - \square Suppress carbide formation at bond-line \rightarrow grain boundary migration across bond interface
- Effect of Post-Bond Heat Treatment on DB 800H
 - HT-A condition → grain boundary migration across bond-line & improved the elongation
 □ Focus on the diffusion of residual Ni
 - HT-B condition → grain boundary migration across bond-line & improved the elongation

Nuclear & High Temperature Materials Lab.

□ Focus on the dissolution of Ti-rich precipitates on bond-line

Precipitates on the bond-line after diffusion bonding are crucial for long-term DB joint integrity of Alloy 800H

Further work

- Fabrication of MLDB with optimized conditions
 - 1150 °C, 9 MPa, 1 h + PBHT (1200 °C, 1 h)
- Air creep tests
 - Focus on the creep-rupture time compared to AR and Not PBHT specimens
- Corrosion and SCC tests in S-CO₂ (600 °C, 20 MPa, 500 h)
 - Focus on the corrosion and SCC behavior of DB joints compared to AR
- Development & optimization of model alloys designed for DB
 - Focus on the AI- and Ti- content of chemical composition

Energy for Earth !!

This study was supported by the Nuclear R&D Program (No. 2020M2A8A4023937) of MSIP/NRF of Rep. of Korea.

Appendix I. Chemical compositions

Chemical compositions of candidate materials

wt.%	Fe	Cr	Ni	С	Ti	Мо	Mn	AI	Si	Other
800H	Bal.	20.12	31.85	.07	.51	-	.87	.49	.17	
800HT	Bal.	21.0	33.6	.06	.55	0.2	0.9	.48	0.4	.003 B .05 Co 0.1Cu
316L	Bal.	16.74	10.09	.016	-	2.04	1.28	.03	.34	N: .07 Co: .19
316H	Bal.	17.3	10.7	.05	-	2.1	0.6	-	0.6	0.2 Cu

