

KNS 2021 추계학술발표회 제 4분과: 핵연료 및 원자력 재료 창원 컨벤션 센터, Oct.20-22

Development of reduced activation austenitic stainless steel containing high density of nanosized precipitates for fusion energy application

Date: Oct. 22nd, 2021 Time: 11:30 ~ 11:50

Hyun Joon Eom, Ji Ho Shin, Byeong Seo Kong, Chae Won Jeong, Changheui Jang* (KAIST)

Nuclear & High Temperature Materials Laboratory Department of Nuclear & Quantum Engineering, KAIST

Contents

- I. Introduction
- II. Alloy design
 - Part I: Chemical composition
 - Part II: Thermo-mechanical processing (TMP)

- **III. Irradiation experiment**
- **IV. Results**
- V. Summary

Introduction

Schematic of Fusion Reactor

High temperature & high neutron irradiation environment

1200 1000 Fe-Cr VHT O 800 model SIC fusion alloys femperature / GFR MSR 600 ODS steel SFR SCWR ferritic/martensitic 400 LFR Cr-steel 200 Gen II internals GEN Il reactor pressure vesse 0 100 150 200 250 Neutron exposure / displacements per atom (dpa)

▲ Operating condition for various nuclear reactors [1]

Operating condition for blanket

- Temperature: ~300 ~700 ℃
- Neutron irradiation: ~150 ~200 dpa

Requirement for blanket structural materials

- Low activation material
- Good high-temperature mechanical property
- Good irradiation resistance (e.g. radiation embrittlement & void swelling resistance)
- Compatibility with chemicals (coolant, breeding material)

Alloy development motivation

KAIST

 J. Seki et al., J. Jucl. Mater. 1791 (1998) 258
V.D. Rusov et al., Sci. and Tech. Nucl. Inst. 2015 (2015) 1

Nuclear & High Temperature Materials Lab.

Candidate material for blanket in nuclear fusion reactor

Development of Advanced radiation Resistant austenitic stainless Steel for Fusion reactor in-core materials (ARES-F)

Alloy development motivation

Enhancing irradiation resistance of ARES-F

- Trap He to avoid void swelling
- Recombination of radiation-induced defects
- High sink strength : Ability to absorb the radiation damage
 - Precipitate sink strength $\rightarrow S_{ppt} = 4\pi r \rho_{ppt} [m^{-2}]$
 - Dislocation sink strength $\rightarrow S_{dis} \propto \rho_{dis} [m^{-2}]$
- Good thermo-mechanical properties at severe environment (Fusion reactor)

5

Increasing number density of precipitates

▲ Void swelling resistance by precipitation [2] Nuclear & High Temperature Materials Lab.

Chemical composition for ARES-F

[1] S. J. Zinkle, Fusion Sci. and Tech. 64 (2013) 65

Temperature Materials Lab.

- Limitation on content for reduced activation
 - Replacement of Ni with Mn
 - Consideration of long-term waste disposal
- Alloy design based on thermodynamic simulation modeling (Thermo-Calc.)
 - Database : TCFE-9 (steels/Fe-alloys v9.0) & MOBFE3 (steels/Fe-alloys mobility v3.0)
 - Fe-Cr-Ni-Mn system
 - □ Cr > 15 wt.% for enough corrosion resistance

▲ Reduced activation elements based on the long term waste disposal criteria [1]

FION

6

Chemical composition for ARES-F

Stable austenitic matrix with Fe-Cr-Ni-Mn system

- Stacking fault energy $[mJ \cdot m^{-2}] - [1]$

→ $\gamma_{SF} = -53 + 6.2(wt. \%Ni) + 0.7(wt. \%Cr) + 3.2(wt. \%Mn)$

- Martensite formation temperature [°C] – [2]

 $\rightarrow M_s = 1302 - 42(wt.\%Cr) - 61(wt.\%Ni) - 33(wt.\%Mn) - 28(wt.\%Si) - 1667(wt.\%C + wt.\%N)$

- Optimization of key element chemical composition
 - Reference alloy : 304 SS & 316 SS
 - Stacking fault energy: > $30 mJ \cdot m^{-2}$
 - Martensite formation temperature: < -200°C

	Fe	Cr	Ni	Mn	Stacking fault energy $[mJ \cdot m^{-2}]$	Martensite formation temperature [°C]	
304 SS	Bal.	18.29	8.06	1.05	13.1	-133.4	
316 SS	Bal.	17.09	10.28	0.58	44.5	-211.0	
ARES-F3	Bal.	15	7	11.3	37.1	-200.2	

▲ Chemical composition and corresponding stacking fault energy and martensite formation temperature of 304 SS, 316 SS and ARES-F3

[1] R.E. Schram et al., Metallurgical Transactions A. (1975) 1345

[2] A.F. Padilha et al., ISIJ International. (2002) 325

▲ Ni-Mn balance for stable austenitic matrix based on Thermo-Calc.

7

Precipitation for ARES-F3

- Standard for minor alloying element for precipitation
 - Easy to control by heat treatment (carbide vs. nitride)
 - Low diffusivity → Large number of fine precipitates
 - Matrix stability → Thermo-Calc. simulation
- Vanadium carbide
 - Unstable matrix
- Zirconium carbide
 - Unstable matrix
- Tantalum carbide
 - Stable matrix

▲ Phase diagram for VC precipitate

Phase diagram for ZrC precipitate

[1] H.K.D.H Bhadeshia, (2000) Proc. of 5th Inter. Charles Par. Tur. Conf., UK

▲ Strong carbide forming element [1]

▲ Phase diagram for TaC precipitate

Nuclear

& High Temperature Materials Lab.

□ ARES-F3

- Austenitic matrix + TaC precipitates
- Low activation material with high sink strength
- Target chemical composition : Fe 15Cr 7Ni 11.3Mn 0.45Ta 0.04C (wt.%)

	Fe	Cr	Ni	Mn	Та	С	Si	Р	S
ARES-F3	Bal.	15.13	7.17	11.16	0.48	0.039	0.22	0.001	0.002

▲ Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) for ingot of ARES-F3 (wt.%)

- Thermodynamic simulation modeling (Thermo-Calc.)
 - TCFE-9 (steels/Fe-alloys v9.0)
 - MOBFE3 (steels/Fe-alloys mobility v3.0)
 - Minimization of Si content to prevent TaC coarsening
 - P & S content → impurities

& High Temperature Materials Lab.

Alloy design – Thermo-mechanical processing

[1] C. N. Homsher, Colorado School of Mines (2012)

Thermo-mechanical processing (TMP) for TaC precipitation

- Formation of pre-existing dislocations by hot-rolling
 - Utilizing the non-recrystallization temperature (T_{NR})
 - Double-hit deformation test
 - Nucleation site for TaC precipitates
- Precipitation heat treatment
 - Ferrite forming temperature (~1270°C)
 - TaC forming temperature (~1220°C)

Alloy design – Thermo-mechanical processing

Microstructure of ARES-F3P

- High number density of TaC precipitates near pre-existing dislocation
- $\bar{\rho}_{\rm ppt} = \sim 1.7 \times 10^{23} \, m^{-3}$
- $\overline{D} = \sim 5.7 \ nm$

▲ TEM and EDS mapping images of ARES-F3P

Irradiation test condition

Heavy ion irradiation for simulation of neutron irradiation

- Materials
 - ARES-F3P
 - Commercial 316 SS (Reference alloy)
- Irradiation condition
 - Stopping and Range of Ions in Matter (SRIM) simulation
 - 40eV displacement energy in Kinchin-Pease model (K-P model)
 - Targeted damage : 200 dpa / Dose rate : 5×10^{-4} dpa/s at 600nm

▲ Heavy ion irradiation conditions [1]

▲ Depth profile of radiation damage (dpa) based on SRIM simulation under K-P model

82 High

Nudaar

Temperature Materials Lab.

Void swelling resistance

Void swelling measurement

- High-magnitude BFTEM images \rightarrow Mainly 400 ~ 800 nm from the surface
- Void size & Void density measurement by Image-J software

• Void swelling (%) =
$$\frac{\frac{\pi}{6}\sum_{i=1}^{N} d_i^3}{A \times t - \frac{\pi}{6}\sum_{i=1}^{N} d_i^3} \times 100$$
 - [1]

▲ Cross-sectional BFTEM images showing the voids in irradiated 316 SS and ARES-F3P

Void swelling resistance

Void swelling measurement

- High number density of voids for 316 SS
- Similar Void size
- Much larger void swelling for 316 SS than ARES-F3P at 400 ~ 800 nm from the surface

Uniformly distributed fine TaC precipitates in austenitic matrix shows superior void swelling resistance

Nuclear & High Temperature Materials Lab.

14

Summary

Development of ARES-F3

- Fe-Ni-Mn-Cr system for low activation material
- High radiation resistance compared to commercial austenitic SS
 - Fully austenitic matrix
 - Uniformly distributed fine precipitates
- Formation of TaC precipitates near pre-existing dislocations through TMP
 - Hot-rolling based on double-hit deformation test
 - Precipitation heat treatment
 - $\bar{\rho}_{ppt} = \sim 1.7 \times 10^{23} \ m^{-3}, \ \overline{D} = \sim 5.7 \ nm$

Void swelling resistance

- Heavy ion irradiation (~200 dpa: high damage level)
 - Radiation damage and dose rate selection based on SRIM under K-P model
 - Void size and number density measurement → Void swelling
 - Comparing ARES-F3P with reference 316 SS → Superior void swelling resistance in ARES-F3P

Energy for Earth !!

Thank you!

Appendix: Irradiation hardening

Irradiation hardening resistance by nano-indentation

- Materials
 - ARES-F3P
 - Commercial 316 SS (Reference alloy)
- Nano-indentation
 - Small-scale evaluation method due to **shallow penetration depth** of ion irradiation
 - Orowan dispersed barrier hardening (DBH) model

- $\Delta H_{v} = 0.0945 \Delta H_{0} (GPa)$
- Much larger irradiation hardening for 316 SS than ARES-F3P

 $\Delta \sigma_y = 3.03 \Delta H_v (MPa)$

