POSTER

Transactions of the Korean Nuclear Society Autumn Meeting Changwon, Korea, October20-22, 2021

Development of Low-Temperature Fuel Performance Analysis Code for Micro Ultra Long life Lead-cooled Fast Reactor

Ji Won Mun, Ho Jin Ryu* Department of Nuclear and Quantum Eng. KAIST

Corresponding author: hojinryu@kaist.ac.kr

Contents

- I. Introduction
- **II. Modified Material Properties**
- **III.** Fuel Performance Evaluation Results & Validation
- **IV.** Conclusion

Introduction

<Objectives of the study>

Development of Low Temperature Fuel (<1200K) performance evaluation code of the long life Micro LFR

- Fuel performance code for LFR FRAPCON-KAIST-1.0 has been developed based on FRAPCON-4.0
- The evaluation of the thermal and mechanical performance of nuclear fuel during steady-state operation for 30 years was conducted

Overall code structures and target variables

Simulation Condition

Schematic cross section image of the fuel rod

Reactor burnup and power profile

Table 1. Fuel rod and LFR core design in this study

Design Factor	Design Value			
Fuel Enrichment (%)	9.75			
Fuel rod outer diameter / Cladding thickness(mm)	20.0 / 0.95			
Cladding material	15-15Ti			
Fill gas material	Не			
Initial Fill gas pressure (bar)	10			
Plenum length (cm)	10			
Fuel rod length (cm)	155			
Core thermal power(MWt)	60			
Average linear heat rate(kW/m)	10.43			
Coolant properties				
Coolant Pb/Bi composition (wt%)	44.5/55.5			
Coolant inlet/outlet temperature(°C)	250.0/350.0			
Mass flux of coolant (kg/m²⋅s)	5534.76			

Important Modified Material Properties

Modified Material properties

 Material properties modification in FRAPCON-4.0 Light Water Reactor (LWR) normal operation fuel performance code

Module	Modified	Modified			
	Material	Properties			
Fuel	UO ₂	Swelling, F	Swelling, Pu generation		
Cladding	Zircaloy	Swelling	Swelling		
	→ 15-15 Ti	Thermal c	Thermal conductivity, Heat capacity, Thermal expansion, Tra		
		nsition terr	nsition temperature		
		Modulus, (Creep (Thermal, Irradiatior	n)	
Coolant	Water \rightarrow LBE	Constant h	Constant heat transfer coefficient		
		Heat capacity, mass flux			
			i		
Fuel material prop	berty Low Tem	nperature	Fuel mechanism	Low Temperature	
	Applic	ability		Applicability	
Thermal conducti	vity C	С	Swelling	Х	
Thermal expansi	on (C	Fission gas release	0	
Melting temp.	(C	Densification	0	
Specific heat	(C	Radial burnup depression	Х	
				(Fast spectrum applicability)	
Enthalpy	(C			
– · · · ·		_			

Fuel Swelling

- When the temperature of the nuclear fuel is low, the fission gas does not sufficiently grow at the grain boundary and is destroyed by the fission fragments that contain high kinetic energy
- Therefore, in the case of fuel operated at a low temperature below 1200°C and high burnup, fission gas is hardly released and exists in the form of a supersaturated solid solution in the nuclear fuel.

Module	Previous model in	Low temperature model	
	FRAPCON -4.0		
Volumetric	Solid swell		
Swelling per 1	(0.062 vol.%)	0.076vol.% @ 800°C	
GWd/tU	+	0.085vol% @1000°C	
	Gas swell	0.115vol.% @ 1200°C	
	(0 vol.% @T<1000°C)		
Reactor type	LWR	LWR	
Reference	[1]	[2]	

Pu generation

Pu generation data were obtained by core neutronics calculation [3]

- Fuel property change as Pu composition change were implemented (density, heat capacity, thermal expansion, enthalpy, modulus, thermal conductivity)
- No fission gas release enhancement effects are reported for MOX fuel operated at low power and low temperature, resulting in low (<3 %) fission gas release fractions [4,5]</p>

[3] Nguyen, Tung Dong Cao, et al. "MicroURANUS: Core design for long-cycle lead-bismuth-cooled fast reactor for marine applications." International Journal of Energy Research (2021).
[4] Walker, C. T., W. Goll, and T. Matsumura. "Effect of inhomogeneity on the level of fission gas and caesium release from OCOM MOX fuel during Laboratory irradiation." Journal of Nuclear Materials 228.1 (1996): 8-17.
[5] White, R. J., et al. "Measurement and analysis of fission gas release from BNFL's SBR MOX fuel." Journal of nuclear materials 288.1 (2001): 43-56.

Cladding Swelling

➢ Highest swelling values occur at 450 ℃

Nuclear Fuel Materials

Laboratorv

- > Temperature dependence of the clad volume variation ($\Delta V/V$) is in a Gaussian form
- Peak cladding damage is 120 dpa at EOL

Fuel Performance Evaluation Results and Validation

Fuel temperature

- Fuel temperature increases due to "thermal feedback"
- 1. Irradiation induced fuel thermal conductivity degradation
- 2. Gap conductance decrease by fission gas release

Fission Gas Release

• Low-Temperature Fission Gas Release (FGR) Empirical Model

$$F_{LT} = 7 \times 10^{-5} BU + C$$

 F_{LT} = fission gas release fraction by low temp. model BU = local burnup in GWd/tU C = 0; for BU ≤ 40 GWd/tU = 0.01(BU-40)/10; for burnup > 40 GWd/tU and F_{LT} ≤ 0.05 (enhanced release by formation of restructured grain)

- FGR showed linear behavior in both sections based on about 35GWd/tU (it is the rod average burnup, not local burnup)
- Stiff increase after 35 GWd/tU due to the C value change
- Maximum FGR: 1.7%

Nuclear Fuel Materials Laboratory

Mechanical analysis

luclear Fuel Materials

.aboratorv

- Low hoop stress level (< 30MPa) that insure cladding integrity due to large cladding thickness and low fission gas release
- Cladding temperature is low (~350°C) that ensures extremely low cumulative damage fraction CDF

 $(3.65*10^{-18}, CDF < 10^{-5} - general criterion)$

 $LMP = T[16.0 + log_{10}(t_R)] = (2060 - \sigma_H)/0.095$ t_R = rupture time (days), σ_H = hoop stress (MPa), T = cladding temperature

$$CDF = \int_0^t \frac{dt}{t_R}$$

Thermal Validation

- Thermal analysis results were cross-checked by COMSOL and heat equation
- Code results show less than 10K calculation difference with Heat equation
- Relatively larger differences between COMSOL arise from the difference in number of radial nodes and meshes used in each calculation

Conclusions

Conclusions

- LWR fuel performance analysis code FRAPCON-4.0 was modified to be applied to micro LFR
- Material properties of the the low temperature UO₂, austenitic stainless cladding, and LBE coolant fast reactor were changed.
- It has been shown that fuel can be maintained at temperatures as low as 1225 K or less for 30 years of full power operation.
- Maximum fractional fission gas release does not exceed 1.7% which can reduce rod internal pressure build-up and allow high initial He pressurization

Thank you

tiv

17