Transactions of the Korean Nuclear Society Autumn Meeting, Changwon, Korea, October 21-22, 2021

Assessment of Subchannel Temperature Distributions in the WARD 61-Rod Heat Transfer Experiment Using the SLTHEN Code

Sun Rock Choi, Jonggan Hong, Jaehyuk Eoh Korea Atomic Energy Research Institute

Introduction

- The core thermal-hydraulic design is used to ensure an appropriate margin for fuel safety limits.
- In a sodium-cooled fast reactor (SFR), DNBR is not a concern because of the high thermal conductivity and high boiling temperature of sodium coolant, and nuclear fuel damage commonly arises from a creep induced failure.
- The creep limit is evaluated based on the maximum cladding temperature considering the uncertainties of the design parameters. An accurate temperature calculation in each subassembly is highly important to assure a safe and reliable operation of reactor systems.
- The core thermal-hydraulic design in the KAERI is performed using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code, which calculates the temperature distribution based on the ENERGY model.
- In this work, the SLTHEN code is validated using subchannel temperature distributions in the WARD 61-rods heat transfer experiments.

SLTHEN Code

- Steady-State LMR core Thermal-Hydraulic Analysis code based on Energy Model
 - ✓ T/H analysis of wire-wrapped assemblies in LMRs
 - Simplified governing equation called ENERGY model to enhance the computational efficiency
 - Empirical correlations to describe the subchannel flow distribution and the radial flow mixing characteristics

Validation

- WARD 61-rods experiment
 - Electrically heated fuel rod in flowing sodium
 - ✓ 61-rod bundle of 1.318 cm diameter
 - ✓ Pitch to diameter ratio of 1.082
 - Wrapped with a spacer wire of 0.094 cm diameter

- Two region model
 - Central region: Enhanced eddy diffusivity by wirewraps

$$\rho C_P U_{zI} \frac{\partial T}{\partial z} = \left(\rho C_P \varepsilon_I + \zeta k\right) \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) + Q$$

✓ Outer region: Oscillatory lateral flows by wire-wraps

 $\rho C_P U_s \frac{\partial T}{\partial s} + \rho C_P U_{ZII} \frac{\partial T}{\partial z} = (\rho C_P \varepsilon_{II} + \zeta k) \left(\frac{\partial^2 T}{\partial n^2} + \frac{\partial^2 T}{\partial s^2} \right) + Q$

Heat supply from 24.1cm to 140cm
in the axial direction.

<WARD 61-rod assembly>

Comparison of subchannel temperature distribution

Pitch

<Subchannels in a subassembly>

<Two region model>

Subchannel Number

<Edge temperature>

Axial position (cm)

Conclusion

- The SLTHEN code validation for the core thermal-hydraulic design has been performed using subchannel temperature distributions in the WARD 61-rods heat transfer experiments.
- The results indicate that the SLTHEN code appropriately predicts the temperature distributions of the WARD 61-rod experimental values.
- Major discrepancy is observed at the maximum temperature in the central region.

ACKNOWLEDGEMENT

 This work was supported by the National Research Foundation of Korea, Republic of Korea (NRF) grant and National Research Council of Science & Technology (NST) grant funded by the Korean government (MSIT) [grant numbers 2021M2E2A2081061, CAP-20-03-KAERI].