Effect of Temperature on Unlubricated Sliding Wear of Additively Manufactured Stainless Steels

권준현1, 김정민1,2, 진형하1
1Nuclear Materials Research Division, Korea Atomic Energy Research Institute, Daejeon, Korea
2University of Science and Technology, Daejeon, Korea

INTRODUCTION

- Tribological Problems in Nuclear Power Plants
 - 웨스팅하우스 가압경수로 가이드 카드 부품에서 비정상적 마모 현상 발생
 - 가이드 카드 기능, 제어봉 집합체 (Rod Control Cluster Assembly)를 지지하고 상하 운동시 경로를 안내함

 ➤ 가이드 카드 마모에 따른 대체부품 부재시 3D 프린팅을 이용한 부품 제작 가능성 고려

- Metal 3D Printing (3DP) Methods – PBF | DED
 - 금속 3DP 방법 가운데 대표적인 PBF (Powder Bed Fusion) 및 DED (Directed Energy Deposition) 특성 고찰

 ➤ 3DP 및 고전적인 방법으로 제작한 스테인리스강 (SS)의 마모 특성을 평가하고 그 현상에 대한 기구를 고찰

EXPERIMENTAL

- Sample Preparation
 - SS 304L samples made by PBF and DED with following process conditions

<table>
<thead>
<tr>
<th>Sample</th>
<th>P</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec.</td>
<td>Gra/Size</td>
<td>Micro-Met/304</td>
<td>Density</td>
<td>Particle</td>
</tr>
<tr>
<td>Vickers Hardness Test</td>
<td>Used micro-hardness tester (HM-122) with 1 kgf load</td>
<td>Perform hardness test along height from bottom to top</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXPERIMENTAL (Cont.)

- Wear Testing with Pin-on-Disk (ASTM G99)
 - Pin-on-disk wear test performed with SS304L disks (PBF, DED, wrought)

 ➤ Measure mass loss of pin and disk separately before and after test; Convert the mass loss to volume loss/traveling distance

RESULTS

- Hardness Measurements

<table>
<thead>
<tr>
<th>Hardness</th>
<th>wrought</th>
<th>PBF</th>
<th>DED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vickers (HV)</td>
<td>152</td>
<td>218.9 ± 2.5</td>
<td>247.7 ± 5.3</td>
</tr>
<tr>
<td>SI unit (MPa)</td>
<td>1491</td>
<td>2147 ± 25</td>
<td>2430 ± 52</td>
</tr>
</tbody>
</table>

 ➤ HV : DED > PBF > Wrought

- Unlubricated Wear Rates (@ Temperature)

 - At room temperature, DED sample shows the lowest wear rate > highest wear resistance
 - At high T (250°C), the wear rates of all samples drop significantly > changes in wear mechanism
 - Observed wear surface of disk samples (upper Right)
 - Low T; bright metallic surface
 - High T; thins layer of dark oxide

DISCUSSION

- At room temperature;
 - DED sample with highest hardness shows strong wear resistance, following Archard's law (wear rate ∝ hardness−1)
 - Bright metallic surface → plasticity-dominated wear

- At high temperature;
 - Dark oxide films on the wear surface → oxidative wear
 - High temperature causes oxidation
 - Wear rates decreased due to the formation of oxide film

Mechanism from Wear-Mode Map
 - Shift from plasticity-dominated to mild oxidation-wear resulting from temperature change

This research was financially supported by the Korea Atomic Energy Research Institute (KAERI) R&D Program.