21A-006

Creep model and experimental data for CrAI-ODS-Zr alloy ATF cladding

Jong-Dae Hong^{a*}, Hongryul Oh^a, Jae Yong Kim^a

^a Nuclear Fuel Safety Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Rep. of Korea

E-mail: jongd@kaeri.re.kr

추계 학술대회 Oct 21-22, 2021 On-line

Introduction

- CrAI-ODS-Zr alloy ATF cladding [1]
 - Surface modified Zr cladding concept in KAERI
 - : CWSR Zry-4 cladding
 - + Partial ODS treatment using Y₂O₃ particles
 - by laser beam scanning (LBS) process
 - + CrAl coating by arc ion plating (AIP) method

Creep

- One of the governing mechanisms inducing cladding deformation during the nominal LWR operation
- Effect of improving the strength of the ODS layer greatly also in creased the creep resistance
- In this regard, the development of a creep law for CrAI-OD S-Zr alloy ATF cladding was based on experimental results

R	kJ/mol-K	0.008314	Saturated primary strain			
C ₀	(n/m ² -s) ^{-C1} MPa ^{-C2}	4.0985E-24	$\varepsilon_p^s = 0.0216 \cdot \dot{\varepsilon}_{th+irr}^{0.109} \left(2 - \tanh\left(35500 \cdot \dot{\varepsilon}_{th+irr}\right)\right)^{-2.05}$			
C_1	unitless	0.85	Total thermal strain $\varepsilon_{-} = \varepsilon^{2} \left(1 - \exp(-52 \cdot \sqrt{\dot{\varepsilon}_{-} \cdot t}) \right) + \dot{\varepsilon}_{-} \cdot t$			
C_2	unitless	1.0	$v_H = v_p \left(1 - \exp\left(-\frac{32}{\sqrt{v_{th+irr}}} + i \right) \right) + v_{th+irr} + \frac{32}{\sqrt{v_{th+irr}}} $			
f(T)	unitless	T<570K 0.7283 570 <t<625k -7.0237+0.0136t<br="">T>625K 1.4763</t<625k>	Total thermal strain rate $\dot{\varepsilon}_{H} = \frac{52 \cdot \varepsilon_{p}^{z} \cdot \dot{\varepsilon}_{th+irr}^{1/2}}{2 \cdot t^{1/2}} \exp\left(-52 \cdot \sqrt{\dot{\varepsilon}_{th+irr}} \cdot t\right) + \dot{\varepsilon}_{th+irr}$			

- Modified FRAPCON creep model for ATF cladding
 - Modify FRAPCON creep model using existing data
 - \circ 11.17 times lower than that of Zry-4
 - Greatly reduced compared with the uncoated Zry-4
 - Same trend to have same effects of temperature and stress with Zr-alloys are assumed due to limited data
 - => Parameter "A" modified

obtained from tests by modification of FRAPCON creep mod el. Also, additional creep tests for CrAI-ODS-Zry-4 ATF cla dding were performed and test results were compared with modified FRAPCON creep model.

Creep test

- Test material : CrAI-ODS-Zr alloy ATF cladding
- Internal pressurization method with 150-mm long specimens
- 350° C and 70/90/120 MPa of hoop stress for 3800 hours
- Creep strain : from the average outer diameter measurement using a micrometer with a 0.0001-mm resolution

Acknowledgments & References

• This work has been carried out under the Nuclear R&D Program supported by the Ministry of Science and ICT. (NRF-2017M2A8A5015064)

[1]] J.-D. Hong, J.Y. Kim,, 2021 KNS spring meeting
[2] J.-D. Hong et al, Nucl. Technol. 203 (2018) 282–292
[3] FRAPCON 4.0, PNNL–19418 Vol.1 Rev.2
[4] M. Limbäck, T. Andersson, ASTM STP 1295. pp. 448–468, 1996.
[5] H.-G. Kim et al., J. Nucl. Mater. 510 (2018) 93–99

	5				
Prediction curve by modified FRAPCON	0	1000	2000	3000	4000
creep model with experimental data	Time (hrs)				

- To evaluate creep deformation of CrAI-ODS-Zry-4 ATF cladding, the FRAPCON creep model for Zr-alloy cladding was modified based on the existing experimental data
- For a comparison, additional creep tests were performed and additional data are good agreement with the trends and magnitude of predictive curve, although measured data are widely scattered with large uncertainties