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1. Introduction 

 
In the disposal process, LILW is classified into short, 

medium, and long-lived waste according to its decay 

time. The radwaste is sealed in radwaste drums before 

disposal and one of the main issues has been monitoring 

the leakage of radioactive isotopes because of the 

possible leakage. Scanning the drums and tracing the 

location of any leak can reduce the risk of 

contamination to the environment as well as the 

operators. 

In this study, the positions of gamma-ray source are 

estimated from the system that consists of a PSOF, two 

photon counters. The photon counting data of a 9 μCi 

Cs-137 source are measured as test data and evaluated 

using the ML (Machine Learning) model made of 

training data of a 41 μCi Cs-137 source to identify 

whether the ML model for the same gamma-ray source 

can estimate source positions with different 

radioactivity. 

 

2. Methods and Results 

 

2.1 Materials and Methods 

 

The plastic scintillating optical fiber (PSOF) used in 

this study is BCF-12 (Saint Gobain Crystals). Table 1 

lists some of the specific properties of BCF-12. 

 

Table 1. Specific properties of BCF-12 

Properties Value (Unit) 

Emission peak 435 (nm) 

Decay time 3.2 (ns) 

# of photons per MeV ~8000 (#) 

Diameter 3.0 (mm) 

 

In this study, two H11890-210 photon counters 

(Hamamatsu Photonics) are used to collect light signal 

from each end of the PSOF. Table 2 lists some of the 

specific properties of the photon counter. 

 

Table 2. Specific properties of H11890-210 

Properties Value (Unit) 

Spectral response 230 ~ 700 (nm) 

Peak sensitivity wavelength 400 (nm) 

Effective area diameter 8 (mm) 

 

In the ML modeling and evaluation process, pre-

processed photon counting data which means to be 

converted from absolute counts to relative counts are 

used to estimate the positions regardless of the activity 

of the source. The Keras framework with Tensorflow 

back-end engine in a Python environment is used for 

the construction of the ML model for the estimation of 

the source position. Nonlinear regression algorithm is 

used as the base of the model. 

Theoretical estimations of the position of the gamma-

ray source are conducted to compare derived from the 

photon counting data using the Beer-Lambert law of 

attenuation. In this study, the attenuation coefficient is 

calculated using the training data of ML model. 

 

2.2 Experimental setup 

 

 
Fig. 1. Experimental setup 

 

Figure 1 shows the experimental setup to measure the 

scintillation signals. A PSOF with a length of 1 m is 

connected to photon counters at both ends and the 

photon counting data are directly transferred to the 

computer. The source is positioned 5 cm below the 

PSOF. At 35 and 65 cm positions, the support bars are 

placed to keep the PSOF to be straight. 

For the ML modeling and evaluation, 1,620 photon 

counting data at nine source positions between 10 to 90 

cm are measured for the ML training data, and 180 

photon counting data at 18 source positions are 

measured for the test data. 

 

2.3 Results 

 

To identify whether the ML model for the same 

gamma-ray source can estimate source positions with 

different radioactivity, the photon counting data of a 9 

μCi Cs-137 source are measured to be used as test data 

and evaluated using the ML (Machine Learning) model 

made of training data of a 41 μCi Cs-137 source. The 

standard deviations of statistical fluctuation of test data 

for Cs-137 with 9 μCi are in the range of 1.8~2.9%. 

Figure 2 and table 3 show the results for the position 

estimation error of the 9 μCi Cs-137 source test data 

using the Cs-137 ML model for a 41 μCi source. The 

results confirm that it is possible to use the ML position 

estimation model to the position of source with different 
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activities, since 9 μCi Cs-137 source test results using 

Cs-137 ML model for 41 μCi source also show a lower 

overall error value compared with the theoretical 

position estimation result. 

 

Table 3. Comparison between the overall error values 

 ML estimation 

(cm) 

Theoretical 

estimation (cm) 

41 μCi Cs-137 1.15 4.27 

9 μCi Cs-137 1.76 4.33 

 

 
Fig. 2. ML model/theoretical position estimation error 

plot 

 

3. Conclusions 

 

In this study, the gamma-ray source position is 

estimated using a 1 m length PSOF, two photon 

counters and via ML data processing. The ML training 

data used 1,620 photon counting data at nine source 

positions between 10 to 90 cm. The test data used 

included 180 photon counting data at 18 source 

positions. To identify whether the ML model for the 

same gamma-ray source can estimate source positions 

with different radioactivity, the photon counting data of 

a 9 μCi Cs-137 source are measured as test data and 

evaluated using the ML (Machine Learning) model 

made of training data of a 41 μCi Cs-137 source. The 

results confirm that it is possible to use the ML position 

estimation model to the position of source with different 

activities. 

Further studies will be conducted on the position 

estimation of gamma-ray sources using scintillation 

signals from complex geometry of PSOF, which can be 

used in the various and customized measurement of 

radiation. 
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