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1. Introduction 

 
When damaged core materials are relocated to the 

reactor lower head with penetrations during a severe 

accident, the loss integrity of the reactor pressure vessel 

caused by this type of penetration failure will occur 

earlier than the global failure of the reactor lower head. 

Tube ejection out of the reactor lower head is the 

representative penetration tube failure models suggested 

by NUREG/CR-5642 [1]. When the penetration tube is 

locked at the contact interface between the tube and the 

reactor lower head by interference, the frictional shear 

force at the interface, which is determined by the contact 

pressure, should be evaluated in order to assess the tube 

ejection failure. In this study, the previous contact 

pressure model [1] is reviewed and the model is 

improved by considering the deformation of the reactor 

lower head. 

 

2. Review of the previous model 

 

The applied force to reactor lower head and the 

interface between penetration tube and hole in the reactor 

lower head by RCS internal pressure is shown in Fig. 1. 

The ejection of a penetration tube can be resisted by high 

friction force at the interface of tube and hole. If the weld 

is failed and the friction force defined by Eq. 1 is less 

than ejection force by internal pressure, the tube will be 

ejected.  

 

𝐹𝑓 = ∫ 𝑑𝐹𝑓 = ∫ 𝑓 ∙ 𝑃𝑠 ∙ 2𝜋𝑟𝑜 ∙ 𝑑𝑙
𝑙𝑓

0
        (1) 

 

where 𝐹𝑓 : friction force, 

 𝑓 : friction coefficient at the interface, 

 𝑙𝑓 : length of contact interface, 

 𝑃𝑠 : contact pressure, 

 𝑟𝑜 : outer radius of tube. 

 

The contact pressure between tube and penetration 

hole 𝑃𝑠 is evaluated by Eqs. 2 and 3.   

 

𝛿 < 0,  𝑃𝑠 = 𝑙𝑒𝑠𝑠𝑒𝑟 𝑜𝑓 {

𝛿∙𝐸(𝑟𝑜
2−𝑟𝑖

2)

𝑟𝑜[𝑟𝑜
2(1−2𝜈𝑡)+𝑟𝑖

2(1+𝑣𝑡)

2

√3
𝜎𝑢 ln (

𝑟𝑜

𝑟𝑖 
)

   (2) 

  𝛿 ≥ 0,  𝑃𝑠 = 0                     (3) 

 

where 𝛿: difference of displacement between tube and 

hole. 

 

 
Fig. 1. Schematic of a mechanical load at a penetration area 

 

3. Derivation of the contact pressure  

 

For a single hollow cylinder describing a penetration 

tube, force equilibrium equation of a volume element can 

be expressed as Eq. 4. 

 

 
 

Fig. 2. Cross-section of one hollow tube  

 
𝜎𝑟−𝜎𝜃

𝑟
+

𝑑𝜎𝑟

𝑑𝑟
= 0       (4) 

 

where 𝜎𝑟 and 𝜎𝜃: radial and circumferential stress. 

 

For a hollow cylinder whose inner radius is  𝑟𝑎 and outer 

radius is 𝑟𝑏 , the following boundary conditions of 

𝜎𝑟(𝑟𝑎) = 𝑃𝑎  and 𝑢(𝑟𝑏) = 𝑢𝑏  are applied. Then, 𝜎𝑟 

becomes 

 

𝜎𝑟 =
𝐸

(1+𝜈)𝑟𝑎
2+(1−𝜈−2𝜈𝑚)𝑟𝑏

2 {𝑢𝑏𝑟𝑏 (1 −
𝑟𝑎

2

𝑟2) +
𝑃𝑎𝑟𝑎

2

𝐸
[(1 +

𝜈) + (1 − 𝜈 − 2𝜈𝑚)
𝑟𝑏

2

𝑟2 ]}                  (5) 

 

The pressure at the outer surface 𝑃𝑏 , which is 𝜎𝑟 in Eq. 

24 at 𝑟 = 𝑟𝑏, becomes 
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𝑃𝑏 =
𝐸

(1+𝜈)𝑟𝑎
2+(1−𝜈−2𝜈𝑚)𝑟𝑏

2 [𝑢𝑏𝑟𝑏 (1 −
𝑟𝑎

2

𝑟𝑏
2) +

2(1−𝜈𝑚)𝑃𝑎𝑟𝑎
2

𝐸
]  

(6) 

 

If 𝑃𝑎 is negligibly small and 𝑚 =
1

2
, Eq. 6 becomes 

 

𝑃𝑏 =
𝐸𝑢𝑏(𝑟𝑏

2−𝑟𝑎
2)

𝑟𝑏[(1+𝜈)𝑟𝑎
2+(1−𝜈)𝑟𝑏

2]
     (7) 

 

The contact pressure of NUREG/CR-5642 in the elastic 

region equals Eq. 7 when 𝑢𝑏 = 𝛿, 𝑟𝑎 = 𝑟𝑖  and 𝑟𝑏 = 𝑟𝑜.  

 

If the material behaves perfectly plastic, the following 

maximum and minimum principal stress can be 

considered for a hollow cylinder. 

 

- Case 1: 𝜎𝜃 and 𝜎𝑟 are maximum and minimum stre

sses. 

- Case 2: 𝜎𝜃 and 𝜎𝑧 are maximum and minimum stre

sses. 

 

where 𝜎𝑟, 𝜎𝜃, and 𝜎𝑧 are radial, hoop and axial stress, 

respectively. 

 

For the plane strain or free-closed ends conditions, it 

satisfies the Tresca yield criterion. Especially for the 

free-closed ends condition, it satisfies the von Mises 

yield criterion, too [2]. Generally, the relationship 

between the maximum and minimum principal stress is 

expressed by this equation.  

 

𝜎𝜃 − 𝜎𝑟 = 𝑘𝜎𝑌                      (8) 

 

where  𝑘 = 1 (for the Tresca yield criterion) 

 𝑘 =
2

√3
 (for the von Mises yield criterion) 

 𝜎𝑌: yield strength 

 

For Case 2, it only satisfies the following Tresca yield 

criterion. 

 

𝜎𝜃 − 𝜎𝑧 = 𝜎𝑌       (9) 

 

Because 𝜎𝑧 = 0 for the plane stress condition, Eq. 3 

becomes  

 

𝜎𝜃 = 𝜎𝑌              (10) 

 

By assuming the radial and hoop stress as 𝜎𝑟𝑒 and 𝜎𝜃𝑒 in 

the elastic region, and 𝜎𝑟𝑝  and 𝜎𝜃𝑝  as in the plastic 

region, the analytical solution for the each stress 

component can be derived as follows:  

 

(For Case 1): 

By substituting Eq. 2 into the equilibrium equation and 

using integration, 𝜎𝑟𝑝 is expressed by Eq. 5. 

 

𝜎𝑟𝑝−𝜎𝜃𝑝

𝑟
+

𝑑𝜎𝑟𝑝

𝑑𝑟
= 0  

→ 𝜎𝑟𝑝 = 𝑘𝜎𝑌 ln 𝑟 + 𝐶1            (11) 

 

where 𝑟 and 𝐶1 are radius and the integral constant. 

 

𝜎𝜃𝑒  and 𝜎𝑟𝑒  are expressed in Eqs. 12 – 13 by the 

analytical solution of the equilibrium equation about the 

radial displacement 𝑢 in the elastic region. 

 

𝜎𝑟𝑒 =
𝐸

(1+𝜈)(1−𝜈−2𝜈𝑚)
[(1 + 𝜈)𝐶2 − (1 − 𝜈 −

2𝜈𝑚)
1

𝑟2 𝐶3]                               (12) 

𝜎𝜃𝑒 =
𝐸

(1+𝜈)(1−𝜈−2𝜈𝑚)
[(1 + 𝜈)𝐶2 + (1 − 𝜈 −

2𝜈𝑚)
1

𝑟2 𝐶3]                (13) 

 

where 𝐸 , 𝜈 , and 𝑚  are the elastic modulus, Poisson’s 

ratio, and indicator for the stress and strain condition (𝜈, 

0 and 
1

2
 for the plane strain, plain stress and free-closed 

ends, respectively). 

 

The radial displacement 𝑢  in the plastic region is 

expressed in Eq. 14. 

 

𝑢 =  𝐶4𝑟 + 𝐶5
1

𝑟
             (14) 

 

where 𝐶4 and 𝐶5 are the integral constants. 

 

By applying the internal pressure 𝑃𝑎  and displacement 

𝑢𝑏 at the external surface for a hollow cylinder with the 

inner and outer radius 𝑟𝑎  and 𝑟𝑏 , respectively, the 

boundary conditions which yield starts at 𝑟 = 𝑟∗ are as 

follows: 

 

𝑟 = 𝑟𝑎 ,   𝜎𝑟𝑝 = 𝑃𝑎       
𝑟 = 𝑟𝑏 ,   𝑢 = 𝑢𝑏                
𝑟 = 𝑟∗,   𝜎𝜃𝑒 − 𝜎𝑟𝑒 = 𝑘𝜎𝑌   
𝑟 = 𝑟∗,   𝜎𝑟𝑒 = 𝜎𝑟𝑝             (15) 

 

According to Eqs. 11 – 14, 𝑃𝑎, 𝑃𝑏  and 𝑢𝑏 become 

 

𝑢𝑏 =
(1−𝜈−2𝜈𝑚)𝑟𝑏

𝐸
(𝑘𝜎𝑌 𝑙𝑛

𝑟∗

𝑟𝑎
+ 𝑃𝑎) +

𝑘𝜎𝑌𝑟𝑏

2𝐸
[(1 +

𝜈)
𝑟∗2

𝑟𝑏
2 + (1 − 𝜈 − 2𝜈𝑚)]               (16) 

 

Therefore, 𝜎𝑟𝑒, 𝜎𝜃𝑒, 𝜎𝑟𝑝, and 𝜎𝜃𝑝 becomes 

 

𝜎𝑟𝑒 =
𝐸

(1−𝜈−2𝜈𝑚)
{

𝑢𝑏

𝑟𝑏
−

𝑘𝜎𝑌𝑟∗2

2𝐸
[

(1+𝜈)

𝑟𝑏
2 +

(1−𝜈−2𝜈𝑚)

𝑟2 ]}      (17) 

𝜎𝜃𝑒 =
𝐸

(1−𝜈−2𝜈𝑚)
{

𝑢𝑏

𝑟𝑏
−

𝑘𝜎𝑌𝑟∗2

2𝐸
[

(1+𝜈)

𝑟𝑏
2 −

(1−𝜈−2𝜈𝑚)

𝑟2 ]}     (18) 

𝜎𝑟𝑝 = 𝑘𝜎𝑌 ln
𝑟

𝑟𝑎
+ 𝑃𝑎                              (19) 

𝜎𝜃𝑝 = 𝑘𝜎𝑌 (ln
𝑟

𝑟𝑎
+ 1) + 𝑃𝑎               (20) 
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By using Eqs. 17 and 19, the external pressure 𝑃𝑏  at 𝑟 =
𝑟𝑏  for a cylinder at the partially plastic state and fully 

plastic state is given by the following relation. 

 

(Partially plastic state, 𝑟𝑎 ≤ 𝑟∗ ≤ 𝑟𝑏):  

𝑃𝑏 = 𝜎𝑟𝑒(𝑟𝑏) =
𝐸

(1−𝜈−2𝜈𝑚)
[

𝑢𝑏

𝑟𝑏
−

(1−𝜈𝑚)𝑘𝜎𝑌

𝐸

𝑟∗2

𝑟𝑏
2 ]        (21) 

 

(Fully plastic state, 𝑟∗ = 𝑟𝑏):  

𝑃𝑏 = 𝜎𝑟𝑝(𝑟𝑏) = 𝑘𝜎𝑌 ln
𝑟

𝑟𝑎
+ 𝑃𝑎              (22) 

 

(For Case 2): 

By substituting Eq. 10 into the equilibrium equation and 

using integration, 𝜎𝑟𝑝 is expressed by Eq. 23. 

 
𝜎𝑟𝑝−𝜎𝜃𝑝

𝑟
+

𝑑𝜎𝑟𝑝

𝑑𝑟
= 0    

→ 𝜎𝑟𝑝 = 𝜎𝑌 +
𝐶1

𝑟
              (23) 

 

𝜎𝑟𝑒 , 𝜎𝜃𝑒  and 𝑢 are obtained by substituting 𝑚 = 0 into 

Eqs. 6 – 8. The boundary conditions are same with the 

Case 1 except 𝜎𝜃𝑒  at 𝑟 = 𝑟∗ . The changed boundary 

condition is given in Eq. 23. 

 

𝑟 = 𝑟∗,   𝜎𝜃𝑒 = 𝜎𝑌            (24) 

 

By applying boundary conditions into Eq. 14, 𝑢𝑏 

becomes 

 

𝑢𝑏 =
𝑟𝑏

𝐸
[(1 − 𝜈) (1 −

𝑟𝑎

2𝑟∗) +
(1+𝜈)𝑟∗𝑟𝑎

2𝑟𝑏
2 ] 𝜎𝑌 +

𝑟𝑎𝑟𝑏

2𝐸
[

(1−𝜈)

𝑟∗ −
(1+𝜈)𝑟∗

𝑟𝑏
2 ] 𝑃𝑎                     (25) 

 

Therefore, 𝜎𝑟𝑒, 𝜎𝜃𝑒, 𝜎𝑟𝑝, and 𝜎𝜃𝑝 becomes 

 

𝜎𝑟𝑒 =
𝐸

(1−𝜈)
{

𝑢𝑏

𝑟𝑏
−

𝑟∗𝑟𝑎(𝜎𝑌−𝑃𝑎)

2𝐸
[

(1+𝜈)

𝑟𝑏
2 +

(1−𝜈)

𝑟2 ]}            (26) 

𝜎𝜃𝑒 =
𝐸

(1−𝜈)
{

𝑢𝑏

𝑟𝑏
−

𝑟∗𝑟𝑎(𝜎𝑌−𝑃𝑎)

2𝐸
[

(1+𝜈)

𝑟𝑏
2 −

(1−𝜈)

𝑟2 ]}            (27) 

𝜎𝑟𝑝 = (1 −
𝑟𝑎

𝑟
) 𝜎𝑌 +

𝑟𝑎

𝑟
𝑃𝑎                            (28) 

𝜎𝜃𝑝 = 𝜎𝑌                 (29) 

 

By using Eqs. 26 and 28, the external pressure 𝑃𝑏  at 𝑟 =
𝑟𝑏  for a cylinder at the partially plastic state and fully 

plastic state is given by the following relation. 

 

(Partially plastic state, 𝑟𝑎 ≤ 𝑟∗ ≤ 𝑟𝑏):  

𝑃𝑏 =
𝐸

(1−𝜈)
[

𝑢𝑏

𝑟𝑏
−

𝑟∗𝑟𝑎(𝜎𝑌−𝑃𝑎)

𝐸𝑟𝑏
2 ]              (30) 

 

(Fully plastic state, 𝑟∗ = 𝑟𝑏):  

𝑃𝑏 = 𝜎𝑌 −
𝑟𝑎

𝑟𝑏
(𝜎𝑌 − 𝑃𝑎)                    (31) 

 

If 𝑃𝑏  corresponds to 𝑃𝑠 in the lower part of Eq. 2, 𝑃𝑏  is 

identical to 𝑃𝑠 in the lower part of Eq. 2 at 𝑘 =
2

√3
, 𝜎𝑦 =

𝜎𝑢 , 𝑟𝑎 = 𝑟𝑖 , 𝑟𝑏 = 𝑟𝑜  and 𝑃𝑎 = 0 . Therefore, the 

assumptions of the previous contact pressure relation in 

NUREG/CR-5642 can be summarized as follows: 

 

- Assumption 1: negligible internal pressure (𝑃𝑎 = 0) 

- Assumption 2: free-closed ends (𝜎𝑧 =
1

2
(𝜎𝑟 + 𝜎𝜃)) 

- Assumption 3: one hollow cylinder configuration 

- Assumption 4: a cylinder in fully plastic state 

- Assumption 5: application of the von Mises yield 

criterion (𝑘 =
2

√3
) 

- Assumption 6: evaluation of pressure at rupture by 

using 𝜎𝑢 instead of 𝜎𝑌 

 

4. Validation 

 

Two-dimensional axisymmetric finite element models 

of the ICI penetration tube using ANSYS Mechanical 

R18.0 are constructed in order to validate the derived 

assumptions of the contact pressure model. PLANE183, 

an 8-node element with mid-nodes, is selected for 

meshing. Half of the ICI penetration tube in the length 

direction is modeled using a symmetry condition. The 

geometry according to the stress and strain conditions 

with the dimension in Table 1 are shown in Fig. 3. In the 

free-closed ends condition shown in Fig. 3, a physical 

cap part at the upper surface of the axisymmetric tube is 

considered, and its outer surface is loaded by pressure 

corresponding to the contact pressure by 𝛿 . The 

geometrical nonlinearity is not considered because the 

derived equations in Chap. 3 assumes no changes of the 

geometrical domain. The 𝜎𝑟 according to 𝑟 and 𝛿 at 400 

K with the free-closed end condition is shown in Fig. 4 – 

7. The  𝜎𝑟 with von Mises yield criterion by Eqs. 17 and 

19 follows the FEM result very well 

 
Table 1. Geometry of the ICI penetration tube for finite element 

modeling 

Inner radius (𝑟𝑎) 9.5 mm 

Outer radius (𝑟𝑏) 38.1 mm 

Length 175 mm 

 

 
Fig. 3. Axisymmetric geometry according to the stress and 

strain conditions (one hollow cylinder) 
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Fig. 4. 𝜎𝑟 according to 𝑟 at 400 K with the free-closed end 

condition and 𝛿 = (0.01 – 0.03) mm 

 
Fig. 5. 𝜎𝑟 according to 𝑟 at 400 K with the free-closed end 

condition and 𝛿 = (0.04 – 0.06) mm 

 
Fig. 6. 𝜎𝑟 according to 𝑟 at 400 K with the free-closed end 

condition and 𝛿 = (0.07 – 0.09) mm 

 
Fig. 7. 𝜎𝑟 according to 𝑟 at 400 K with the free-closed end 

condition and 𝛿 = (0.1 – 0.3) mm 
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Fig. 8. 𝜎𝑟 according to 𝑟 at 400 K with the free-closed end 

condition and 𝛿 = (0.4 – 0.5) mm 

 

 

5. Conclusions 

 

In this study, the contact pressure evaluation method 

from NUREG/CR-5642 has been reviewed. The 

assumptions of a geometrical configuration and the 

‘stress and strain condition’ of the previous model in 

NUREG/CR-5642 are derived in a reversed manner by a 

stress analysis. As a result, it was found that the previous 

model only considers the deformation of the ICI 

penetration tube itself and it assumes the free-closed ends 

condition. However, these assumptions cannot explain 

the deformation of the reactor lower head hole. And more 

general stress and strain conditions are needed to explain 

the mounting condition of the penetration tube. And the 

previous model considers the rupture pressure by using 

the ultimate strength instead of the yield strength for the 

analytical stress analysis which results in overestimated 

contact pressure. These drawbacks can be modified by 

choosing the configuration of two concentric hollow 

cylinders which represent the ICI penetration tube and 

the reactor lower head with a generalized expression of 

the stress and strain conditions and by using the yield 

strength.  
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