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1. Introduction

In order to harness the distribution of neutron flux 
within a reactor system of interest, either transport or 
diffusion equations can be utilized. A solution from the 
former method results in an accurate estimation but often 
requires strenuous computation, whereas the latter 
approach can be cheaply solved but presents an inherent 
limit in its accuracy.  

For synergistic exploitation of aforementioned 
approaches, a concept of two-step procedure had been 
devised. The heterogeneity of each fuel assembly is dealt 
through high fidelity transport calculation and 
represented through assembly-wise homogenized 
quantities [1]. The whole core can then be expressed 
through such parameters, where assembly-wise diffusion 
calculation can be applied to acquire its attribute. 

However, due to the assembly-wise homogenization, 
approximation is imperative to estimate the pin wise 
information for such a conventional two-step approach. 
Hence, an attention toward the pin-wise two-step 
procedure is being recognized, but such a procedure will 
entail a noticeable computational burden that stems from 
the enlargement of the system matrix to be handled. 

Recently, a novel acceleration scheme for pin-wise 
nodal calculation had been proposed, namely Hybrid 
Coarse-Mesh Finite Difference (HCMFD) method [2,3]. 
The assembly-wise (global) nodes comprise the reactor 
eigenvalue problem, whereas the pin-wise (local) nodes 
formulate an assembly-wise fixed-source problem. 
Whereupon, a hierarchy of acceleration can be 
established, which maximizes the parallel efficiency. 

In this work, a scrutiny concerning the convergence 
behaviour of such a method has been conducted, which 
reveals a strong dependency on how the local calculation 
is treated. Especially, for stainless steel reflected MOX 
fuel embedded core, an inflection in the convergence of 
source error was observed. The details along with the 
heuristic remedy to circumvent such an anomaly are 
discussed.  

2. Hybrid Coarse-Mesh Finite Difference Method

The Hybrid CMFD method is devised for pin-wise 
nodal analysis which considers two different types of 
nodes: global and local nodes associated with assembly 
and pin-wise homogenized parameters respectively. 

The one-node CMFD acceleration is applied on 
global nodes and the conventional CMFD acceleration is 
utilized for local nodes to establish a parallelized 
acceleration structure [2]. 

Fig. 1. Balance within a node of interest. 

2.1 CMFD Method 

Balance for neutron flux within a node of interest i 
as shown in Fig. 1 can be expressed as below: 

𝐽𝐽�̅�𝑖,𝑖𝑖+1 − 𝐽𝐽�̅�𝑖−1,𝑖𝑖 + Σ𝑟𝑟𝑖𝑖Δ𝑥𝑥𝑖𝑖𝜙𝜙�𝑖𝑖 =
𝜒𝜒𝑔𝑔,𝑖𝑖

𝑘𝑘
�𝜈𝜈Σ𝑓𝑓𝑖𝑖Δ𝑥𝑥𝑖𝑖𝜙𝜙�𝑖𝑖
𝑔𝑔

, (1) 

where 𝐽𝐽�̅�𝑖,𝑖𝑖+1 represents the net neutron current egressing 
from node i toward the adjacent node i+1, k denotes the 
multiplication factor, and all the other notations are that 
of the convention. Through finite difference method 
(FDM), one yields the following simple relations: 

𝐽𝐽�̅�𝑖,𝑖𝑖+1 = −𝐷𝐷�𝑖𝑖,𝑖𝑖+1(𝜙𝜙�𝑖𝑖+1 − 𝜙𝜙�𝑖𝑖), (2) 

𝐷𝐷�𝑖𝑖,𝑖𝑖+1 =
2 � 𝐷𝐷𝑖𝑖Δ𝑥𝑥𝑖𝑖

� � 𝐷𝐷𝑖𝑖+1Δ𝑥𝑥𝑖𝑖+1
�

𝐷𝐷𝑖𝑖
Δ𝑥𝑥𝑖𝑖

+ 𝐷𝐷𝑖𝑖+1
Δ𝑥𝑥𝑖𝑖+1

, (3) 

A correction factor 𝐷𝐷�𝑖𝑖,𝑖𝑖+1 that adjusts the net current 
to be that of the reference can be introduced as below: 

𝐽𝐽�̅�𝑖,𝑖𝑖+1
𝑟𝑟𝑟𝑟𝑓𝑓 = −𝐷𝐷�𝑖𝑖,𝑖𝑖+1(𝜙𝜙�𝑖𝑖+1 − 𝜙𝜙�𝑖𝑖)− 𝐷𝐷�𝑖𝑖,𝑖𝑖+1(𝜙𝜙�𝑖𝑖+1 + 𝜙𝜙�𝑖𝑖), (4) 

𝐷𝐷�𝑖𝑖,𝑖𝑖+1 =
−𝐷𝐷�𝑖𝑖,𝑖𝑖+1(𝜙𝜙�𝑖𝑖+1 − 𝜙𝜙�𝑖𝑖)− 𝐽𝐽�̅�𝑖,𝑖𝑖+1

𝑟𝑟𝑟𝑟𝑓𝑓

(𝜙𝜙�𝑖𝑖+1 + 𝜙𝜙�𝑖𝑖)
. (5) 

Since Eq. (1) is a well-defined problem, correction of the 
net-current provides an equivalency to the reference 
solution. Hence, a higher-order solution, i.e., reference 
solution, can be obtained with an acceleration that stems 
from the simplicity of FDM, hence attaining the name of 
coarse-mesh finite difference method (CMFD) [3]. 

2.2 One-Node CMFD Method 

The one-node CMFD method introduces two 
correction factors separately for each node as illustrated 
in Fig. 2. Through the analogous expression of neutron 
current as for Eq. (2), one acquires the following 
equations [4]. 



Fig. 2. Visualization of one-node CMFD correction factors. 

𝐽𝐽�̅�𝑖,𝑖𝑖+1 = −
2𝐷𝐷𝑖𝑖
∆𝑥𝑥𝑖𝑖

(𝜙𝜙�𝑠𝑠 − 𝜙𝜙�𝑖𝑖)−
2𝐷𝐷�𝑖𝑖𝑅𝑅

∆𝑥𝑥𝑖𝑖
(𝜙𝜙�𝑠𝑠 + 𝜙𝜙�𝑖𝑖), (6) 

𝐽𝐽�̅�𝑖,𝑖𝑖+1 = −
2𝐷𝐷𝑖𝑖+1
∆𝑥𝑥𝑖𝑖+1

(𝜙𝜙�𝑖𝑖+1 − 𝜙𝜙�𝑠𝑠) −
2𝐷𝐷�𝑖𝑖+1𝐿𝐿

∆𝑥𝑥𝑖𝑖+1
(𝜙𝜙�𝑠𝑠 + 𝜙𝜙�𝑖𝑖+1). (7) 

By equating Eqs. (6) and (7), an expression for the 
surface flux can be attained.  

𝜙𝜙�𝑠𝑠 =
∆𝑥𝑥𝑖𝑖+1�𝐷𝐷𝑖𝑖 − 𝐷𝐷�𝑖𝑖𝑅𝑅�𝜙𝜙�𝑖𝑖 + ∆𝑥𝑥𝑖𝑖�𝐷𝐷𝑖𝑖+1 + 𝐷𝐷�𝑖𝑖+1𝐿𝐿 �𝜙𝜙�𝑖𝑖+1

∆𝑥𝑥𝑖𝑖+1�𝐷𝐷𝑖𝑖 + 𝐷𝐷�𝑖𝑖𝑅𝑅� + ∆𝑥𝑥𝑖𝑖�𝐷𝐷𝑖𝑖+1 − 𝐷𝐷�𝑖𝑖+1𝐿𝐿 �
, (8) 

where associated correction factors are deduced as below: 

𝐷𝐷�𝑖𝑖𝑅𝑅 = −
∆𝑥𝑥𝑖𝑖  𝐽𝐽�̅�𝑖,𝑖𝑖+1

𝑟𝑟𝑟𝑟𝑓𝑓 + 2𝐷𝐷𝑖𝑖�𝜙𝜙�𝑠𝑠
𝑟𝑟𝑟𝑟𝑓𝑓 − 𝜙𝜙�𝑖𝑖�

2�𝜙𝜙�𝑠𝑠
𝑟𝑟𝑟𝑟𝑓𝑓 + 𝜙𝜙�𝑖𝑖�

, (9) 

𝐷𝐷�𝑖𝑖+1𝐿𝐿 = −
∆𝑥𝑥𝑖𝑖+1 𝐽𝐽�̅�𝑖,𝑖𝑖+1

𝑟𝑟𝑟𝑟𝑓𝑓 + 2𝐷𝐷𝑖𝑖+1�𝜙𝜙�𝑖𝑖+1 − 𝜙𝜙�𝑠𝑠
𝑟𝑟𝑟𝑟𝑓𝑓�

2�𝜙𝜙�𝑠𝑠
𝑟𝑟𝑟𝑟𝑓𝑓 + 𝜙𝜙�𝑖𝑖+1�

. (10) 

It is noteworthy to articulate that Eqs. (9) and (10), 
which are the correction factors for one-node CMFD, 
require not only the information of reference current but 
also the reference surface flux. Comprehensively, 
procurement of reliable surface flux information is 
essential concerning the implementation of one-node 
CMFD acceleration scheme. 

2.3 Overall Procedure 

A global node-wise reactor eigenvalue problem is 
considered to attain the multiplication factor and surface-
wise incoming partial current. Through the modulation 
process, such quantities determine both pin-wise fission 
source and incoming partial current, which result in a 
formation of local fixed source problem. The pin-wise 
flux and outgoing partial current are updated accordingly, 
where the latter quantity could serve as an incoming 
partial current for consecutive local calculation. Through 
the homogenization process, the updated local 
information is impartially transferred to the global 
calculation. The overall procedure is depicted in Fig. 3. 

It is worthwhile to articulate that local calculation is 
invoked when a prefixed number of global node-wise 
outer iterations had been performed. Solving local two-
node CMFD equation is always entailed by exchange of 
partial currents, which is referred to as sweeping.  

Fig. 3. Overall procedure for HCMFD algorithm 

Modulation 

𝜙𝜙�𝑖𝑖,𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜙𝜙�𝐼𝐼𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 ×
𝜙𝜙�𝑖𝑖,𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

∑ 𝜙𝜙�𝑖𝑖,𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 ∙ �
𝑉𝑉𝑖𝑖,𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑉𝑉𝐼𝐼𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿
�

, (11) 

𝐽𝐽𝑖𝑖,𝐼𝐼
𝑖𝑖𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐽𝐽𝐼𝐼

𝑖𝑖𝑖𝑖,𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 ×
𝐽𝐽𝑖𝑖,𝐼𝐼+1
𝑙𝑙𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

∑ 𝐽𝐽𝑖𝑖,𝐼𝐼+1
𝑙𝑙𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑖𝑖 ∙ �
𝑆𝑆𝑖𝑖,𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑆𝑆𝐼𝐼𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿
�

. (12) 

Homogenization 

𝜙𝜙�𝑆𝑆,𝐼𝐼
𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 = �𝜙𝜙�𝑆𝑆,𝑖𝑖,𝐼𝐼

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑖𝑖

∙ �
𝑆𝑆𝑖𝑖,𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑆𝑆𝐼𝐼𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿
�, (13) 

𝐽𝐽𝐼𝐼
𝑙𝑙𝑜𝑜𝑜𝑜,𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 = �𝐽𝐽𝑖𝑖,𝐼𝐼

𝑙𝑙𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑖𝑖

∙ �
𝑆𝑆𝑖𝑖,𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑆𝑆𝐼𝐼𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿
�, (14) 

Σ𝛼𝛼,𝐼𝐼
𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 =

∑ Σ𝛼𝛼,𝑖𝑖,𝐼𝐼
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∙ 𝜙𝜙�𝑖𝑖,𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∙ 𝑉𝑉𝑖𝑖,𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖

∑ 𝜙𝜙�𝑖𝑖,𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∙ 𝑉𝑉𝑖𝑖,𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖
, (15) 

𝛼𝛼: reaction type, V: volume, S: surface area,  
i: local node index, I: global node index 

2.4 Surface Flux Treatment 

Implementation of one-node CMFD allows the local 
problem for each global node to be handled in a parallel 
manner, which hinges upon global net current and 
surface flux. The former quantity can be directly 
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harnessed by the subtraction of outgoing partial currents 
between interfacing global nodes: 

𝐽𝐽�̅�𝐼,𝐼𝐼+1 = 𝐽𝐽�̅�𝐼𝑙𝑙𝑜𝑜𝑜𝑜 − 𝐽𝐽�̅�𝐼+1𝑙𝑙𝑜𝑜𝑜𝑜 , (16) 

where 𝐽𝐽�̅�𝐼𝑙𝑙𝑜𝑜𝑜𝑜 flows from Ith node to (I+1)th node, and 𝐽𝐽�̅�𝐼+1𝑙𝑙𝑜𝑜𝑜𝑜 
traverses in an opposite direction. 

Whereas, there exist several methods to update the 
global surface flux. As shown in Eq. (13), surface flux 
for each global node is updated separately, i.e., two 
different surface flux values exist for every interfacing 
surface between contiguous global nodes. Calculation of 
one-node CMFD factors can be directly performed 
without any further treatment. On the other hand, the 
interfacing surface flux can be adjusted to their 
arithmetic average or could be appraised from the 
diffusion approximation: 

𝜙𝜙�𝑆𝑆 =
𝜙𝜙�𝑆𝑆,𝐼𝐼 + 𝜙𝜙�𝑆𝑆,𝐼𝐼+1

2 , (17) 

𝜙𝜙�𝑆𝑆 = 2(𝐽𝐽�̅�𝐼𝑙𝑙𝑜𝑜𝑜𝑜 + 𝐽𝐽�̅�𝐼+1𝑙𝑙𝑜𝑜𝑜𝑜), (18) 

where 𝜙𝜙�𝑆𝑆  corresponds to the surface flux between 
consecutive nodes I and I+1. 

3. Numerical Results

Figure 4 depicts the MOX-loaded 2D SMR cores 
that had been considered throughout the presented study, 
where each fuel assembly consists of 16x16 fuel rods 
with a pitch of 1.2658 [cm]. The pin-wise 2group 
homogenized cross-section was acquired from 
deterministic transport calculation via DeCART2D [5].  

A reference solution was obtained by the 
conventional CMFD accelerated pin-wise nodal 
expansion method (NEM). For the HCMFD based 
calculation, the local calculation was invoked for every 
5 global iterations. The criterion for convergence was set 
to be 1E-08 with respect to the L2 norm of the global 
node-wise fission source error, and every calculation was 
performed with four 3.1 GHz Intel Core i5 processors. 

3.1 Baffle Reflected Core 

The convergence behavior for having different 
numbers of sweeping, i.e., local calculation iteration 
number, is depicted in Fig 5. The surface flux was either 
treated based on Eq. (17) or (18), where the former 
treatment is represented as ‘SF-AVERAGE’ and the 
latter one as ‘SF-CURRENT’.  

Regarding the baffle reflected core, there were no 
salient distinctions in the convergence behaviour 
between different approaches, where every method 
shows a significant reduction in the computing time 
compared to the pin-wise NEM-CMFD calculation. 
Table 1 summarizes the elapsed time for performing each 
calculation. 

Fig. 4. Illustration of the MOX-loaded cores (a) baffle reflected, 
(b) stainless-steel reflected, and (c) description of each fuel 
assembly. 

Fig. 5. Convergence behavior for baffle reflected core. Both the 
number of sweeping procedures performed and surface 
treatment are exhibited. 

Table 1. Computation time and 𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆 value (Baffle Reflector) 
Method Time (s) 𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆 

NEM-CMFD 4.86 1.056064 
SWEEP2 / SF-AVERAGE 1.07 1.056064 
SWEEP2 / SF-CURRENT 1.01 1.056064 
SWEEP3 / SF-AVERAGE 1.05 1.056064 
SWEEP3 / SF-CURRENT 1.03 1.056064 

3.2 Stainless Steel Reflected Core 

Figure 6 illustrates the convergence behaviour for 
the stainless-steel reflected core. Unlike the baffle 
reflected core, there exists a noticeable disparity for 
having sweeping numbers of 2 and 3, where one could 
observe clear inflection for the former case. 

Table 2 enumerates the required computational time 
for each approach. The reduction in the computing 
burden for such a core was not much as effective 
compared to the baffle reflected configuration. 
Especially, the unstable reduction in the source error 
hampered the effectiveness of HCMFD acceleration for 
having a sweeping number of 2. In addition, a non-
negligible difference in the computing time was 
observed for different surface flux treatments with a 
sweeping number of 3. 
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Fig. 6. Convergence behavior for stainless-steel reflected core. 
Both the number of sweeping procedures performed and 
surface treatment are exhibited. 

Table 2. Computation time and 𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆 value (SS Reflector) 
Method Time (s) 𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆 

NEM-CMFD 4.77 1.075853 
SWEEP2 / SF-AVERAGE 2.59 1.075853 
SWEEP2 / SF-CURRENT 2.61 1.075853 
SWEEP3 / SF-AVERAGE 1.49 1.075853 
SWEEP3 / SF-CURRENT 1.39 1.075853 

3.3 Adaptive Sweeping 

Further increase in the number of sweeping was 
conducted with a current based assessment of surface 
flux for the stainless-steel reflected core. Figure 7 
exhibits the convergence behavior and the required 
computing time is shown in Table 3. 

From the observation that having a sweeping 
number of 4 results in the fastest dwindle until the 
inflection, and sweeping of 3 depicts steady reduction, 
the following adaptive scheme has been devised. 
 

step1) Start with nsweep equal to 4. 
step2) Check whether an inflection had occurred or not. 
step3) If inflection point has been encountered, reduce 
nsweep to 3. 

Despite its simplicity, the adaptive scheme 
successfully provided a further reduction in both 
computing time and required number of outer iterations 
as shown in Fig. 8. It could be clearly seen that 
appropriate local problem consideration significantly 
affects the overall convergence. 

4. Conclusions

The presented paper investigates the variation in the 
surface treatment strategies accompanied with different 
sweeping procedures. It has been observed that for the 
baffle-reflected MOX-loaded core, regardless of the 
aforementioned considerations, the HCMFD approach 
noticeably reduces the computing burden.  

However, concerning the stainless-steel reflected 
configuration, an inflection in the convergence have been 
observed for having a sweeping number of 2. In addition, 
the diffusion-based surface flux treatment required a 
smaller number of iterations, although its effectiveness 
was marginal. 

Fig. 7. Convergence behavior for stainless-steel reflected core 
with a surface flux treatment based on the diffusion theory.  

Table 3. Computation time and 𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆 value (SS Reflector) 
Method Time (s) 𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆 

NEM-CMFD 4.77 1.075853 
SWEEP2 / SF-CURRENT 2.61 1.075853 
SWEEP3 / SF-CURRENT 1.39 1.075853 
SWEEP4 / SF-CURRENT 2.20 1.075853 
SWEEP5 / SF-CURRENT 1.42 1.075853 

ADAPTIVE / SF-CURRENT 1.16 1.075853 

Fig. 8. Convergence behavior for stainless-steel reflected core 
with adaptive sweeping procedure. 

With an adaptive sweeping procedure, the required 
computational burden dwindled noticeably. Although 
preliminary, the illustrated result attests to the superior 
performance of HCMFD over the direct pin-wise CMFD 
calculation. 
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