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1. Introduction

We introduced the trigonal node based Analytic Function 

Expansion Nodal (AFEN) method which have been being 

developed to deal with the asymmetric inhomogeneity 

inside the hexagonal fuel assembly. [1]  Considering that the 

number of nodes increases by six times in the trigonal 

AFEN method compared to the hexagonal method, a 

relatively simple form of the AFEN method was attempted, 

in which only the neutron flux was used as the nodal 

unknown per interface. The hexagonal refined AFEN 

method that the trigonal method is being benchmarked 

against uses both the neutron flux and the flux moment as 

the nodal unknown per interface. This method is the first 

AFEN method tried for the trigonal geometry, while various 

forms of the AFEN method have successfully been 

developed in the rectangular geometry [2,3] and in the 

hexagonal geometry[4-7]. 

In spite that this method increases not only the number of 

nodes by six times but also the number of interface 

unknowns by 1.5 times, it failed in showing better accuracy 

than the hexagonal refined AFEN method.  The most 

probable reason analyzed as being responsible for this poor 

performance was the looser flux continuity constraint 

applied at each interface between two adjacent hexagonal 

blocks in the triangular AFEN method. While the refined 

hexagonal AFEN method with the step weighting function 

in the transverse direction in the definition of the flux 

moment divides a hexagonal block interface in half and 

applies the continuity condition to each half, the triangular 

method applied only one continuity condition for the entire 

block interface.  

In order to improve the loose continuity constraint of the 

trigonal AFEN method applied at each interface of two 

adjacent hexagonal blocks, it is conceivable to introduce a 

triangular refined AFEN which employs the flux moments 

as an additional unknowns at all the triangular interfaces. 

However, this refined AFEN method may be too much 

refinement in terms of increasing the number of interface 

unknowns by 6 times compared to the hexagonal refined 

AFEN method. Instead, this paper introduces a simpler 

refined AFEN method that adopts the flux moment as an 

additional interface unknown only on one of three sides in a 

trigonal node that interfaces with an adjacent hexagonal 

block. This method increases the number of interface 

unknowns by 2.5 times compared to the hexagonal refined 

AFEN method. It should also always be superior to the 

hexagonal refined AFEN method at least in terms of 

unknown numbers and constraints, because it compasses all 

the nodal unknowns and interface constraints of the 

hexagonal refined AFEN method. 

2. Methodology

The trigonal refined AFEN method developed in this 

paper asymmetrically introduces the flux moment as an 

additional unknown on only one of three sides of the 

trigonal node. For example, for Node n in Fig. 1, the flux 

moment is asymmetrically introduced only at the x interface 

shared by the two adjacent hexagonal blocks as shown in 

Fig. 2.  

Fig. 1. Two adjacent hexagonal fuel blocks divided 

into trigonal nodes 

Fig. 2. Coordinate systems and nodal unknowns 

of Node n 

In this figure, x and jx are the flux moment and its 

corresponding current moment at the interface, respectively. 

The other quantities in Figure 2 are defined as in Reference 

1, but x and jx are defined by. 
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respectively. Here, w(y) is a weighting function in 

the y direction and we use the step function as the 

weighting function which is a unit function with the 

sign changing across y = 0. 



The response matrix for the refined AFEN method is 

derived for Node n by a two-step procedure similar to that 

applied in Reference 1: the first step to solve a single node 

problem to obtain the relationship between the interface 

fluxes and the interface currents and the second step to 

derive the response matrix by replacing the interface fluxes 

and interface currents in this relationship with the incoming 

and outgoing interface partial currents. 

2.1   Refined AFEN Solution of Single-Node Problem 

2.1.1 Intranodal Flux Expansion 

We have retained the three fluxes symmetrical to the 

three interfaces of a node, and additionally introduced the 

asymmetrical flux moment at only one interface. 

Therefore, the intranodal flux expansion function 

corresponding to the three symmetrical interface fluxes 

can be exactly same to that used in Reference 1. This flux 

expansion function consists of only valid three of six 

component functions: sinh(√𝚲𝑥), cosh(√𝚲𝑥) and their 

four symmetric partners to the 120-degree and 240-

degree directions. Please see Reference 1 for the detailed 

procedure of obtaining this flux expansion function 

which is shown below:  
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where A, A and Aare the three transformed 

coefficients resulted by applying the direction 

decoupling transformation described in Reference 1. Of 

course, this function satisfies the neutron diffusion 

equation everywhere within the node to conform to 

AFEN's philosophy. 

Now, the expansion function component 

corresponding to the flux moment at the x interface must 

be added to this symmetric expansion function. Since we 

asymmetrically introduced the flux moment only at the x 

interface, the expansion function component to be added 

no longer needs to be symmetric in the three side-

directions. Rather, sinh(√𝚲𝑥 ) multiplied by a linear 

function in the y direction is the most natural one which 

complies the diffusion equation in the node because the 

symmetric expansion function Eq. (3) does not contain a 

component that is odd in both the x and y directions. 

Then, the intranodal flux expansion becomes 

𝛟(𝑥, 𝑦) = 𝛟𝑠(𝑥, 𝑦) + sinh⁡(√𝚲𝑥)𝐁𝒙                 (4) 

Note that this flux expansion includes all the 

combinations in which even and odd functions in the x 

and y directions can be combined. The even-odd test 

described in Reference 1 performed in each of x- and y-

directions for the four expansion components in Eq. (4) 

revealed that all four of these are valid for the flux 

expansion of a trigonal node. 

2.1.2  Refined AFEN Solution of Single-Node Problem 

Solving the single node problem in Fig. 2 to obtain the 

intranodal flux distribution means expressing four 

coefficients of the flux expansion Eq. (4) in terms of three 

transformed interface fluxes and one interface flux moment. 

According to the direction decoupling transformation, the 

transformed fluxes and currents are given as a linear 

combination of the original interface fluxes and currents 

shown in Fig. 2 as follows: 
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where 𝛟̅ is the volume average flux of the node. 

When we express the unknowns in Eq. (4) in terms of 

the transformed expansion coefficients, the simple 

AFEN method introduced in Reference 1 decouples 

completely the original 3x3 matrix system into three 

scalar systems due to the decoupling transformation. 

However, the decoupling transformation of the refined 

AFEN method in this paper decouples the 3x3 system 

into two scholar systems and one 2x2 matrix system. For 

 and  components, two scholar systems are obtained:

𝛟𝜃 = 𝐏𝜃𝐀𝜃 ,⁡⁡⁡⁡⁡𝛟𝜀 = 𝐏𝜀𝐀𝜀  (7) 

or 

𝐉𝜃 = 𝐃𝐐𝜃𝐀𝜃,⁡⁡⁡⁡⁡𝐉𝜀 = 𝐃𝐐𝜀𝐀𝜀 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (8)

For  component, one 2x2 system is obtained: 
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By eliminating the coefficient vector, we can get the 

relationship between the transformed interface fluxes 

and currents:  
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where  is  or  and 

(12) 

𝐓𝛽 = 𝐏𝛽𝐐𝛽
−1𝐃−1, 𝛽 = ⁡𝜃, 𝜀⁡𝑜𝑟⁡𝜒  (13) 

Actually, all relationship matrixes T’s just before 

multiplying the inverse of D to the far right of Eq. (13) 

are a matrix function of By expanding the relationship 

matrix, e.g., T in Taylor series of , 
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we can show that the flux expansion function is 

physically valid because the relationship matrix is not 

singular across  = 0. 

2.2   Refined AFEN Response Matrix 

The response matrix that computes the interface partial 

currents going out of a node from the interface partial 

currents coming into the node is derived by noting that the 

interface partial current at the interface s is expressed in 

terms of the interface flux and current. 
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where flow direction index f is in or out, interface index s is 

x, u, or p. This relation for the partial current moments is 

also similarly given by 
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Then, the interface flux and current are equivalently given 

by 

𝐉𝒔
𝒊𝒏 = 𝐏𝒔

𝒊𝒏 − 𝐏𝒔
𝒐𝒖𝒕,⁡⁡⁡𝛟𝒔 = 𝟐(𝐏𝒔

𝒊𝒏 + 𝐏𝒔
𝒐𝒖𝒕)         (17)

A similar expression is also given for the flux moment 

and the current moment.  

𝐣𝒙
𝒊𝒏 = 𝐩𝒙

𝒊𝒏 − 𝐩𝒙
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𝒊𝒏 + 𝐩𝒙
𝒐𝒖𝒕)         (18)

Since the relationship (16) is linear and the direction 

transformation explained in Reference 1 is also linear, 

the partial current shall have its transformed form with 

respect to the transformation and this form shall be just 

the form in which interface index s is substituted the 

direction index  ,  or . 

𝐉𝜶
𝒊𝒏 = 𝐏𝜶

𝒊𝒏 − 𝐏𝜶
𝒐𝒖𝒕,⁡⁡⁡𝛟𝜶 = 𝟐(𝐏𝜶

𝒊𝒏 + 𝐏𝜶
𝒐𝒖𝒕), 𝜶 = 𝜽, 𝜺, 𝒐𝒓⁡𝝌    (19) 

Substituting the relationships Eq. (18) and Eq. (19) 

into Eq. (11) and solving for the transformed outgoing 

partial current and the outgoing partial current moment, 

we finally obtain the response matrix for the refined 

AFEN method as follows,  

𝐏𝜶
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where R = - (2I + T) -1 (2I – T) for ,  or .  

Note that the interface partial currents can be easily 

transformed into their linearly transformed partners and 

vice versa. Once the interface incoming partial currents 

are given for a node, the interface outgoing partial 

currents can be calculated by the response matrix Eq. 

(20). Then, these outgoing partial currents become the 

partial currents incoming into its neighboring nodes. This 

provides an iterative process to solve the global core 

eigenvalue problem through the well-known inner-outer 

iteration. As in Reference 1, the number of inner 

iterations per outer iteration is set to be one and the RGB-

BW sweeping scheme is adopted in this paper. This kind 

of iteration schemes is known to be good in convergence 

and stability due to geometrical balance. It further 

enhances the advantage in parallel-computing that the 

response matrix method has already. 

3. Numerical Results and Discussion

Note that we developed this triangular refined AFEN 

method in order to improve the accuracy of the simple 

AFEN method introduced in Ref. 1,  which is suspected of 

degrading performance due to the loose continuity 

constraints applied to each interface of two adjacent 

hexagonal blocks. This refined AFEN method encompasses 

the refined hexagonal AFEN method because it contains all 

the node unknowns and continuity constraints of the refined 

hexagonal AFEN method and further more et cetera. 

The ability of this refined AFEN method to overcome the 

inferiority of the simple AFEN method was verified by 

solving the MHTGR-350 problem which was also used in 

Reference 1 as a benchmark problem. 

In Fig. 3, the assembly-wise relative powers of two 

trigonal AFEN methods were compared with those of the 

hexagonal refined AFEN method. Since all the AFEN 

methods are based on the response matrix method, the zero 

incoming partial current boundary condition was applied. 

As mentioned in Reference 1, the accuracy of the hexagonal 

AFEN method was well shown in the reference 3. This 

accuracy is also demonstrated by showing that, when 

compared with the CAPP solution of the MHTGR-350 

problem with the cubic finite element option, a 22 pcm error 

occurs in the effective multiplication factor and up to 0.2% 

error in the block-wise power distribution. Therefore, the 

hexagonal method can be estimated to show an error of this 

level or less for the extrapolated fine mesh solution of the 

diffusion equation for this problem. 

Fig. 3. Results of the MHTGR-350 benchmark problem 

(1/12 core). 

Following the disappointment we received in 

Reference 1, this figure delivers another disappointment 

to us. Obviously, the refined trigonal AFEN method 

provides better results than the simple AFEN method. 

However, the amount of improved accuracy is very small. 

Moreover, it is natural that the refined trigonal AFEN 

method should show better results than even the 

hexagonal refined AFEN method, because the whole set 

of the nodal unknown and continuity constraints is a 

subset of the set of he trigonal refined AFEN method. 

Contrary to our expectation, the trigonal method has a 

power error of 2% magnitude against the hexagonal 

method which is estimated to show only a power error of 

within 0.2% to the exact reference solution. Now, there 

is a situation where we have to suspect a program bug. 

To reduce the risk of such a situation, we solved the 

MHTGR-350 benchmark problem by reducing the size 

of the hexagonal block. The core configuration was left 

as it was, and the block size was sequentially reduced to 

1/2, 1/4, 1/8, 1/16, and 1/32 times. The reason for 

reducing the overall problem size is simply because the 

core made of hexagonal blocks cannot be divided into 

smaller hexagonal meshes. 
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Fig. 4. Results of the MHTGR-350 benchmark problem 

with mesh refinement (1/12 core). 

In Fig. 4, the results of the refined trigonal AFEN 

method were compared with those of the refined 

hexagonal AFEN method. Unlike Fig. 3, this figure has 

only the active core in order not to get too busy. Looking 

at this figure, it can be seen that as the node size 

decreases, the solutions of the two methods converge to 

each other. However, the relative error of the effective 

multiplication factor cannot be ignored even when the 

node size is very small, which may be because the 

absolute value of the effective multiplication factor is 

small. This result reduces the likelihood that the trigonal 

AFEN's low performance is due to a bug. The remaining 

cause that can now be suspected is that the AFEN 

expansion function is inefficient in representing the 

neutron flux distribution within a trigonal node. It will be 

a future study to compare the various expansion 

functions including polynomials and finally to find out 

the cause of the performance degradation of the trigonal 

AFEN method. 

4. Conclusions

In Reference 1, we introduced the AFEN method in 

the trigonal geometry which uses only the neutron flux 

per interface as the nodal unknown. However, we 

reported the poor performance of this method despite 

increasing the number of interface unknowns by 1.5 

times compared to the refined hexagonal AFEN method. 

The most probable cause of this poor performance 

analyzed in Reference 1 was the loose flux continuity 

constraint applied to each interface between two adjacent 

hexagonal blocks. To eliminate this cause, we developed 

the refined AFEN method in this paper that adopts the 

flux moment as an additional interface unknown only on 

one of three sides in a trigonal node that interfaces with 

an adjacent hexagonal block.  

This method should have shown better results than the 

hexagonal refined AFEN method, because it compasses 

all the nodal unknowns and constraints of the hexagonal 

method. However, this method was not only inferior to 

the hexagonal method, but also showed similar accuracy 

to the trigonal method in Reference 1, which we intended 

to improve. 

Now we are suspecting that the inferiority of the 

trigonal method is due to the AFEN expansion function 

being inefficient in representing the neutron flux 

distribution within the node. It will be a future study to 

find the final cause of the performance degradation of the 

trigonal AFEN method by trying various flux expansion 

functions including polynomials to represent the 

intranodal flux distribution within a trigonal node 

properly. 

Alternatively, this triangular nodal method, along with 

the hexagonal nodal method, may constitute a global-

local iteration method. In this method, the triangular 

nodal method solves a single asymmetrically 

heterogeneous hexagonal block with the boundary 

condition obtained by the global hexagonal nodal 

calculation and passes the homogenization constants of 

the block to the hexagonal nodal calculation. This global-

local iteration method facilitates treatment of 

heterogeneous hexagonal blocks while maintaining the 

accuracy of the hexagonal nodal method. 
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