Seoul National University

Flow Accelerated Corrosion Experiment in LBE for Corrosion Modeling Development Using Impeller Equipped Facility

KNS 2021 Spring Meeting 2021/05/14

Jaewon Choi, Youho Lee*

Nuclear Fuel Materials and Safety Laboratory

1. Experimental Device for Flow Accelerated Corrosion Using Impeller

- (1) Overview
- (2) Design concept
- (3) Details of experimental facility

2. FAC experiment for 150h

- (1) Experiment environment
- (2) Elemental composition changes according to flow velocities
- (3) Elemental composition changes according to elements
- (4) Affected zone thickness
- (5) Corrosion modes following flow velocity

3. Conclusion

1. Experimental Device for Flow Accelerated Corrosion Using Impeller

- (1) Overview
- (2) Design concept
- (3) Details of experimental facility

2. FAC experiment for 150h

- (1) Experiment environment
- (2) Elemental composition changes according to flow velocities
- (3) Elemental composition changes according to elements
- (4) Affected zone thickness
- (5) Corrosion modes following flow velocity

3. Conclusion

(1) Overview

- Corrosion theory
- For low oxygen concentration,

 k_d $M_s \rightleftharpoons M_d$ k_{pr}

dissolution flux of the metal: $\vec{J} = \vec{J}_{diss} = \vec{J}_T = R(S_M - C_b)$, $R = \frac{Kk_{pr}}{K + k_{pr}}$

 $(S_M$: solubility limit of the metal, C_b : the concentration of solute in the bulk solution, K: mass transfer coefficient, knr: precipitation rate coefficient)

When $v \downarrow$, $K \ll k_{pr} \Rightarrow R \approx K$: Mass transport(v) dominant When $v \uparrow$, $K \gg k_{pr} \Rightarrow R \approx k_{pr}$: Phase transport (**T**, activation) dominant

In high velocity region (C) Erosion-corrosion take place.

Lee's Lab Nuclear Fuel Materials and Safety

5

< Jinsuo Zhang, Ning Li, Review of the studies on fundamental issues in LBE corrosion, Journal of Nuclear Materials, Volume 373, Issues 1-3, 2008>

(2) Design concept

Lee's Lab 6 Nuclear Fuel Materials and Safety

Author	Year	Journal	Type of Device	Type of Pb- alloy	O2 concentration control	Flow accelerated corrosion	Mechanical behavior measurement
Oksana Klo, et al.	2018	Journal of Nuclear Materials	Pool	LBE	0	х	O (tensile test)
Mariya Yurechko, et al.	2018	Journal of Nuclear Materials	Pool	LBE	0	Х	O (<u>Creep rupture te</u> st)
Anna Hojna, et al.	2018	Corrosion Science	Natural convection loop	LBE	0	0	Х
Masatoshi Kondo, et al.	2018	Fusion Engineering and Design	Pool	Pb-Li	x	0	Х
Chanho Park, et al.	2018	Fusion Engineering and Design	Pool	Pb-Li	х	0	х
Thomas Lapau, et al.	2019	Journal of Nuclear Materials	Pool/ Forced convection loop	LBE	0	X(Pool)/ O(Loop)	х
Cunfeng Yao, et al.	2019	Journal of Nuclear Materials	Forced convection loop	LBE	х	0	Х
Gang Chen, et al.	2019	Progress in Nuclear Energy	Pool	LBE	Х	0	Х
Donatella Giuranno, et al.	2020	Corrosion	Pool	Pb	0	0	Х
Z.Y.Wu, et al.	2020	Journal of Nuclear Materials	Pool	LBE	0	Х	Х
Haoran Wang, et al.	2020	Corrosion Science	Pool	LBE	0	х	х
L. Martinelli, et al.	2020	Corrosion Science	Pool	LBE	0	0	x
Haiyan Jiang, et al.	2020	Fusion Engineering and Design	Pool	Pb-Li	0	0	Х
J.W.Choi	2021~	-	Pool	LBE	0	0	0

• Pool type vs. Loop type

	Pool type	Loop type		
Size	Relatively small	Relatively large		
Co	Able to control easily due to relatively small size	 Unfavorable for controlling uniformly 		
v	 Hardly generate flow by attaching pump 	Favorable for generating flow		

Schematic figure of newly designed FAC experimental device

Controlling both oxygen concentration and LBE flow by attaching impeller to pool type device

(3) Details of experimental facility

Lee's Lab Nuclear Fuel Materials and Safety

- Magnitude of flow velocity differs \rightarrow continuously depending on a distance from the rotation center even in a same specimen ($v = r\omega$).
- Specimens are made in the shape \rightarrow of dog-bone, measuring mechanical properties through tensile test after exposed to LBE.

63 mm ('Long' specimen) 29 mm ('Short(inside)' specimen) 29 mm ('Short(outside)' specimen)

Blueprint of FAC experimental device

Actual figure of FAC experimental device and specimen holder

(3) Details of experimental facility

Specification		
Max. temperature	600℃	
Max. angular velocity	500 RPM	
Specimen holder diameter	180 mm	
Max. linear velocity on specimen	<u>4.19 m/s</u>	
Crucible diameter	224 mm	
Total height	1059.3 mm	

* Provisional patent application completed. (10-2021-0006668, Korea)

(3) Details of experimental facility

Specification					
Manufacturer	SCK-CEN (Belgium)				
Туре	Bi/Bi2O3 reference electrode				
Sensor materials	YSZ and steel sheath				
Medium	LBE				
Environment	Ar				
Operational temperature(℃)	300~				

Relationship between the electrical potential indicated by the sensor and the dissolved oxygen concentration in LBE

- 1. Experimental Device for Flow Accelerated Corrosion Using Impeller
 - (1) Overview
 - (2) Design concept
 - (3) Details of experimental facility

2. FAC experiment for 150h

- (1) Experiment environment
- (2) Elemental composition changes according to flow velocities
- (3) Elemental composition changes according to elements
- (4) Affected zone thickness
- (5) Velocity dependent corrosion modes

3. Conclusion

(1) Experiment environment

Experiment environment			
Time	~150h		
Temperature	600℃		
Oxygen concentration	$2.87 imes 10^{-8}$ wt.%		
Rotative velocity	400 RPM		
Max. linear velocity on specimen	3.35 m/s		
Pressure	1.2 bar		
Material	SUS 316L		

Flow rate and oxygen concentration conditions of existing researches

< Jinsuo Zhang, Ning Li, Review of the studies on fundamental issues in LBE corrosion, Journal of Nuclear Materials, Volume 373, Issues 1-3. 2008>

(1) Experiment environment

Specimens after cleaning using 150℃ of glycerin

Specimen holder after cleaning using 150°C of glycerin

- The effects of corrosion that can be observed even by the eyes
- Common color change in specimens on similar locations
- Erosion occurred at the tip of the specimens

(2) Elemental composition changes according to flow velocities

Lee's Lab 14 Nuclear Fuel Materials and Safety

< Jinsuo Zhang, Ning Li, Review of the studies on fundamental issues in LBE corrosion, Journal of Nuclear Materials, Volume 373, Issues 1-3, 2008>

<Konstantina Lambrinou, Evangelia Charalampopoulou, Tom Van der Donck, Rémi Delville, Dominique Schryvers, Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C, Journal of Nuclear Materials, Volume 490, 2017,>

A SEM image of a specimen exposed by LBE in SNU corrosion experiment

(2) Elemental composition changes according to flow velocities

Lee's Lab Lee's Lab Nuclear Fuel Materials and Safety

<SEM images and EPMA line-profile of the cross sections>

(2) Elemental composition changes according to flow velocities

Specimens after cleaning using 150℃ of glycerin

(3) Elemental composition changes according to elements

Lee's Lab **Nuclear Fuel Materials and Safety**

(4) Affected zone thickness

18 Nuclear Fuel Materials and Safety

Affected zone thickness following flow velocity of LBE

- Ununiform and statistical corrosion behavior ٠
- Affected zone thickness can be a significant factor for mechanical behavior modeling. •
- Corrosion modes can be divided 4 regions following rate of change in the thickness and corrosion layer ٠ differentiation.

(1) Region 1: low velocity region (0.8~1.6 m/s)

- Affected zone thickness ~ 10µm
- LBE penetration +ferrite layer formation
- LBE partly penetrated through the grain boundary or crystal structure defects
- Ni, Cr concentration (C_{Ni} , C_{Cr}) decreased
- High Fe concentration at the non-penetrated region ($C_{Fe} > C_{Fe,0}$)
- Corroded region consists of a single layer.

(2) Transition region (1.6~2.1 m/s)

- Affected zone thickness increases from 10µm to 17µm
- LBE Penetration + ferrite layer
- $C_{\text{Ni}}, C_{\text{Cr}} \downarrow C_{\text{F}e} \uparrow$
- Local corrosion
- Thickness ~ 10µm
- Cr+Fe / Ni+LBE layer
- High flow velocity (2~3 m/s) and low oxygen concentration accelerate diffusion and accumulation of Cr and Ni on the surface
- On each layer, $C_{Cr} > C_{Cr,0} C_{Ni} > C_{Ni,0}$
- Uniform corrosion
- <u>Cr+Fe layer and Ni layer thickness rapidly increases</u> in the transition area.

Lee's Lab 21 Nuclear Fuel Materials and Safety

(3) Region 2: medium velocity region (2.1~3.2 m/s)

- Affected zone thickness ~ 17μm
- LBE Penetration + ferrite layer
- $C_{\text{Ni}}, C_{\text{Cr}} \downarrow C_{\text{Fe}} \uparrow$
- Local corrosion
- Thickness ~ 10µm
- Cr+Fe/ Ni+LBE oxide layer
- Both layers are fully developed
- The total corrosion depth stops increasing.

Lee's Lab **Nuclear Fuel Materials and Safety**

(4) Region 3: high velocity region (3.2~3.3 m/s)

- Erosion takes place.
- Totally different corrosion aspect
- LBE penetration through grain boundary seldom occurs.
- Affected zone thickness : $0 \sim 5 \mu m$
- Non-continuous layer composition .

Lee's Lab Lee's Lab 23 Nuclear Fuel Materials and Safety

1. Experimental Device for Flow Accelerated Corrosion Using Impeller

- (1) Overview
- (2) Design concept
- (3) Details of experimental facility

2. FAC experiment for 150h

- (1) Experimental environment
- (2) Elemental composition variation to same velocities
- (3) Elemental composition variation to same elements
- (4) Affected zone thickness
- (5) Velocity dependent corrosion modes

3. Conclusion

- Experimental device which can control temperature and oxygen concentration and expose continuous flow velocity to specimens was developed.
- As a result of 150h corrosion experiment, it is shown that corrosion on SUS 316L was ununiform and statistical.
- Affected zone thickness(total corrosion depth) would be the best approach to the mechanical behavior modeling from an empirical point of view.
- Corrosion modes can be divided 4 regions following rate of change in the affected zone thickness and corrosion layer differentiation.

- Experiment campaigns with more various condition are going to be carried out for developing modeling.
- Tensile test to investigate the correlation with affected zone thickness and mechanical strength is planned
- Accumulation of corrosion data on candidate materials in LFR and ceramics (Al₂O₃, SiO₂, etc.)
- This research was supported by the National Research Foundation of Korea(NRF) grant funded by the Ministry of Science and ICT(MSIT) (No. 2019M2D1A1067209).

