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1. Introduction

These days, Artificial Neural Networks (ANN) 

gained significant popularity among researchers in 

various fields of knowledge. The first publicly 

recognized success of ANNs happened in the area of 

image recognition and computer vision. The ability of 

neural networks to learn specific features of different 

objects through training on thousands of images 

immediately became desired in various areas of 

research.  

Once applied in other industries, it was quickly 

discovered that not every field of knowledge has readily 

available thousands of samples that can be used for 

training an ANN model. In fact, in most cases 

researchers needed to create training data for their 

models from scratch, often spending hundreds of hours 

and noticeable material resources for that purpose. As a 

result, we see a huge difference in how various people 

prepare their data. Thus, in our first work [1], we used 

500 modelled Loading Pattern (LP) samples to predict 

several nuclear design parameters. In another work [2], 

we used 108,000 training samples to predict 

homogenized 2-group macroscopic cross-sections (XS) 

for the purpose of being used in a nodal diffusion code. 

Some of the latest publications include works of Lee et 

al [3], who generated 82,500 data samples to train a 

Convolutional Neural Network (CNN) for diagnosing 

abnormal accidents during a Nuclear Power Plant 

(NPP) operation. Or, even more that that, Guo et al [4] 

prepared 18,816 photographs of Fuel Assembly (FA) 

cladding scratches and other damages that were 

obtained using an actual experimental equipment and 

materials. 

Though each of described examples has different 

application of an ANN and different data preparation 

technique, there is one common thing for all of them. In 

each of those studies, the training dataset size was 

chosen based on either the current capability of the 

research team and equipment or on the researcher’s 

intuition, which led to an assumption that the given data 

size is enough for producing an unbiased result. 

However, such approach does not provide evidence on 

whether the chosen dataset size is not too large or too 

small for a certain application. Therefore, the outcomes 

of given studies need to be further tuned in order to be 

used by commercial companies or industry, in which 

every usage of computation equipment or material 

resources is desired to be minimized. 

In this study, we are investigating whether the 

training dataset size for producing a general-case 

prediction using ANN can be significantly lowered, by 

that saving decent amounts of time and resources. For 

this purpose, we prepared our training data using 

techniques discussed in Section 2. After that, we used 

the prepared data for training a CNN that is described in 

Section 3. The factual outcomes of our study and the 

analysis of the results can be found in Section 4. 

2. Data Preparation

In this work, we chose a CNN regression model that 

predicts multiple nuclear design parameters as our 

testing tool. In order to evaluate the importance of 

having a larger training data size, a large dataset 

consisting of 40,192 training samples and 5,120 

validation samples was generated using our in-house 

nodal diffusion code RAST-K [5]. In addition to that, a 

testing dataset consisting of 1,280 samples and based on 

different from the training dataset types of fuel was 

generated. This separation assures that our training data 

does not overlap with the testing data, by that providing 

a general case application scenario, which is primarily 

desired by industry. All used fuel types for training and 

testing datasets are listed in Table I. The reactor type 

chosen for this study is a Small Modular Reactor 

(SMR) described in [6].  

Table I: Fuel Assembly Types used For Training and 

Testing Datasets 

FA Type Enrichment, % Burnable Absorber 

Training Dataset 

16 × 16 Type A 1.5 No 

16 × 16 Type B 2.5 No 

16 × 16 Type C 3.5 No 

16 × 16 Type D 4.5 No 

16 × 16 Type E 5.5 No 

Testing Dataset 

16 × 16 Type F 3.09 No 

16 × 16 Type G 4.13 No 

16 × 16 Type H 4.95 No 

To avoid uncertainties that might get introduced in 

case of using a free-range mini-batch size, we set the 

total size of the training dataset and the validation 

dataset, as well as all used fraction sizes of studied 

datasets as multiples of 256. A total of 166 target 

reactor design parameters including Cycle Length, 

Critical Boron Concentration, values of various pin 
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peaking factors, normalized fuel assembly power and 

burnup distributions were intended to be predicted 

using an ANN. A few examples of the target parameter 

distributions in the studied datasets of different sizes are 

shown in Fig. 1. The color codes for the given examples 

are the following: orange for 256 samples, green for 

512 samples, pink for 768 samples, and blue for 40,192 

samples. 

Fig. 1. Distribution of target parameters for different dataset 

sizes. 

The prepared training data was further processed and 

used for a CNN training as discussed in the following 

section. 

3. Neural Network Description and Methodology

In order to reduce uncertainties that are not directly 

related to the neural network training, we applied 

multiple mitigation techniques. The data preparation 

approach was described in the previous section, while 

the particular methodology related to the CNN model 

training is explained in Subsections 3.1 and 3.2 below. 

3.1. CNN Architecture 

For this study, a CNN shown in Fig. 2 was used. All 

layers of this ANN except for the very last output layer 

were followed by a ReLU activation function. The 

output layer was followed by a “sigmoid” activation 

function in order to provide a smoother output shape of 

the data prediction. 

As stated in Section 2 of this paper, the dataset size 

for all our evaluated cases was chosen as a multiple of 

256. That was done to train all cases using a mini-batch 

of 256 samples. In this case, each mini-batch of any 

dataset size used in our study would be perfectly filled 

with training samples in order to get even weight 

adjustment during training for all cases.  

Fig. 2. CNN architecture used in this study. 

For each training case, all hyperparameters were kept 

constant. In addition to before-mentioned mini-batch 

size, we used Adam optimizer with learning rate 0.0007 

and default decay options. Mean Absolute Error (MAE) 

was chosen as the loss function for all cases, the 

validation dataset was fixed as described in Section 2, 

and the training data shuffle was performed at each 

epoch. The neural network was built and trained using 

Python 3.7 and TensorFlow 2.4 on nVidia RTX 2060 

SUPER 8 Gb graphics card. 

3.2. Testing Methodology 

For proper measurement of the prediction accuracy 

for different dataset sizes, the case matrix shown in 

Table II was defined.  

Table II: Training Dataset Size Arrangement for this Study 

Training dataset size (weight adjustments per 1 epoch) 

Initial Training Dataset Sizes 

256 (1), 768 (3), 1280 (5), 1792 (7), 2304 (9), 2816 

(11), 3328 (13), 3840 (15), 4352 (17), 4864 (19), 6400 

(25), 9472 (37), 12544 (49), 15616 (61), 18688 (73), 

21760 (85), 24832 (97), 27904 (109), 30976 (121), 34048 

(133), 37120 (145), 40192 (157) 

Additional Training Dataset Sizes 

256 (1), 512 (2), 768 (3), 1024 (4), 1280 (5) 

In order to account for the uncertainties that occur 

during training a model, we used an ensemble model 

training that consists of 10 trainings for each training 
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dataset size given in Table II. After that, we applied the 

trained ensemble models to the testing data and found 

the average relative error for all 166 predicted 

parameters for each model in the ensemble. This value 

can be called a Combined Mean Relative Difference, 

and for brevity, we will call this value an Error Metrics 

(EM). Since our testing dataset was evaluated by 10 

different models of the ensemble, we were able to 

calculate Mean and Standard Deviation of EM for each 

of the studied test cases using Pandas module of 

Python. Calculation of the testing dataset predictions 

was performed after each epoch of the training process 

for each model. By doing that, we intended to save the 

model configuration that shows the lowest possible EM 

for the testing data. For each particular case, we set the 

maximum number of training epochs to 5,000, and we 

set a rule that terminates the training if there is no 

improvement in the testing data EM over the latest 150 

epochs. The final product of each training is the model 

with the lowest testing data EM. 

4. Results and Discussion

Once all the initial data preparation and model 

training conditions were satisfied, we obtained the 

following results for our testing dataset. Below, we 

provide the Mean and Standard Deviation values for the 

chosen testing data as functions of the training dataset 

size and the estimated time required to generate that 

training dataset. In order to calculate the time, we used 

an averaged value of 19 seconds per one LP calculation 

using our code RAST-K and Intel Core i7 7700K at 

4.37 GHz. The results of calculations are shown in Fig. 

3 and in Table III. 

Fig. 3. Mean and Standard Deviation of the Testing Dataset 

Error Metrics as functions of the training dataset size and data 

generation time. 

From the results shown above, it can be observed that 

there is a “saturation” point in the number of training 

data samples, exceeding which does not result in 

improvement of the EM for the testing data. Therefore, 

the time and resources spent on preparing that excess 

training data could have been saved. However, the 

value of Standard Deviation for the testing data 

obtained using 256-sample training dataset is noticeably 

higher compared to using other training dataset sizes. 

This can be related to the chosen termination rule that 

stops the code if the testing data EM does not improve 

over the latest 150 epochs. In particular, as shown in 

Table II, the weights are being updated only once per 

epoch for that smallest dataset case, which may seem to 

be unfair compared to other cases. To partially account 

for that, and to add more resolution to the lower-end 

dataset size area, we ran the same calculation again 

using the Additional Training dataset sizes from Table 

II. Contrary to our previous approach, we ran each of

those cases for all 5,000 epochs without applying the 

termination rule. Our expectation was to see the 

reduction of Mean and Standard Deviation of the testing 

dataset for all additionally evaluated testing dataset 

cases. The result for the additional 10-times ensemble 

evaluation on the previously discussed testing data is 

given in Fig. 4 and in Table III. 

Table III: Testing Dataset Prediction Results using 

Different Size of Training Dataset 

Training Dataset 

Size, # samples 
Mean, % Standard Deviation 

Initial Evaluation of the Testing Dataset Prediction 

256 0.677 0.120 

768 0.389 0.018 

1280 0.360 0.035 

1792 0.336 0.047 

2304 0.335 0.043 

2816 0.292 0.039 

3328 0.309 0.028 

3840 0.315 0.042 

4352 0.305 0.028 

4864 0.304 0.023 

6400 0.303 0.052 

9472 0.310 0.037 

12544 0.300 0.030 

15616 0.308 0.032 

18688 0.308 0.039 

21760 0.302 0.037 

24832 0.290 0.049 

27904 0.321 0.036 

30976 0.313 0.016 

34048 0.316 0.038 

37120 0.323 0.030 

40192 0.323 0.037 

Additional Evaluation of the Testing Dataset Prediction 

256 0.424 0.022 

512 0.310 0.030 

768 0.300 0.037 

1024 0.288 0.041 

1280 0.274 0.030 
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The produced result shows that our initial expectation 

is confirmed, and the values of Mean and Standard 

Deviation for the testing dataset using additionally 

trained models are reduced. At the same time, the graph 

shown in Fig. 4 demonstrates a clearer transition to the 

“saturation” point. 

Fig. 4. Updated Mean and Standard Deviation of the Testing 

Dataset Error Metrics as functions of the training dataset size. 

5. Conclusion

In this paper, we presented the results of our study 

on how the training dataset size impacts the accuracy of 

the trained ANN model. It was found that for a general 

case prediction there is a “saturation” dataset size, 

exceeding which does not result in the accuracy 

improvement. This can be partially explained by the 

choice of the testing dataset in our study. Unlike many 

other studies, we did not build the testing data from the 

same dataset as the training data. Instead, we created a 

new testing dataset that is using different fuel 

enrichments and therefore illustrates a more generalized 

use-case. The particular difference between training 

data and testing data used in our study is shown in 

Table I, and the detailed explanation of the testing 

dataset evaluation  methodology is discussed in 

Subsection 3.2. 

In our future studies, we would like to perform 

similar tests using a testing dataset within the same 

range as the training data. We expect that the 

“saturation” point for that specific case would be much 

higher compared to the testing data used in our study. 

Finally, though we attempted to eliminate as many 

uncertainties and obstacles as possible, there are still 

ways to improve and generalize our result. In particular, 

we would like to test more application scenarios 

(classification and regression), more reactor models, 

and to apply the no-termination rule used for the 

Additional Training cases to all training cases. 
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