Self-disposal of aluminum material radioactive waste through applying radioactive waste classification and self-disposal standards

Ho Min Kim*, Kyu Hong Lee, Yong Jin Jeong

Research Reactor Fuel Division, Korea Atomic Energy Research institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, Republic of Korea *Corresponding author: homink@kaeri.re.kr

1. Introduction

Research reactor fuel division in Korea Atomic Energy Research Institue(KAERI) has HANARO nuclear fuel manufacturing project. One of the goals of the project is the in-house production and supply of the nuclear fuel assemblies required for HANARO research reactor operation. During the nuclear fuel manufacturing process, aluminum radioactive waste is generated in the aluminum-clad concentric extrusion process and the CNC machining process. Self-disposal is one ways of reducing low and intermediate level radioactive waste. Here is an introduction to self-disposal carried out to reduce aluminum radioactive waste which is generated during HANARO research nuclear fuel assemblies manufacture.

2. Method and Results

This section describes the procedure for self-disposal of aluminum radioactive waste that is concerned about surface radiocontamination from radiation controlled area.

2.1 Target selection and data investigation of selfdisposal object

According to "radioactive waste classification and self-disposal standards" in notice of Nuclear Safety and Security Commission, wastes subject to self-disposal must meet the standards of allowable concentration for self-disposal. Also. We need to investigate data of wastes subject to self-disposal such as contamination type, quantity, reason of generation, period of generation etc. These are information about aluminum self-disposal radioactive waste we investigated.

category of radioactive waste	aluminum
generation facility	SAEBIT fuel science
	building 203ho
type of contamination	
(surface or volume	surface contamination
contamination)	
weight(kg)	396
main nuclide	U-235, U-238

2.2 Confirmation for nuclide and contamination level through sample analysis

Through sample analysis, the nuclides and contamination levels of radioactive waste can be determined. After that check whether self-disposal is possible by comparing the analysis result with the allowable concentration for self-disposal.

2.2.1 Surface contamination measurement

The measuring device should be calibrated.

- Radiation does rate measurement : gamma survey meter
- Surface contamination measurement : proportional counter

2.2.2 U-235, U-238 Allowable concentration

Sample analysis result is satisfied with allowable concentration.

- Self-disposal allowable concentration for low and intermediate level radioactive waste : 1 Bq/g

2.3 Declaration for self-disposal plan

After collecting the data for the self-disposal, declare the self-disposal plan to Korea Institute of Nuclear Safety(KINS).

2.4 Self-disposal

Once the self-disposal plan is approved, radioactive waste subject to self-disposal can be disposed of by itself. The aluminum radioactive waste is disposed of for recycling.

2.5 Notification after self-disposal

After finishing self-disposal, notify the result of self-disposal to KINS.

3. Conclusions

After self-disposal of low and intermediate level aluminum radioactive waste through radioactive waste classification and self-disposal standards, we could reduce radioactive waste and resource recycling. These are very helpful to preserve our environment and natural resources.

REFERENCES

[1] C.K. Kim, K.H. Kim, J.M. Park, Y.S. Lee, D.B. Lee, S.J. Oh, H.D. Park, D.S Sohn, Activities for the HANARO fuel production at KAERI, European Nuclear Society, Austria, (2014)

[2] J.S. Song, S.P. Kim, G.J. Lee, E.S. Park, B.R. Park, A study on the safety assessment of low and intermediate-level radioactive waste disposal for developing performance criteria, *Korea Institute of Nuclear Safety*, Daejeon, Korea, (1992)

[3] H.D. Park, D.B. Lee, J.M. Park, C.K. Kim, Localization of HANARO fuel, Transactions of the Korea Institute of Metal and Materials spring meeting, Korea, (2005)