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1. Introduction 

 
If a loss-of-coolant accident (LOCA) happens in 

nuclear power plants (NPPs), core cooling capability is 
maintained and abnormal states are mitigated by 
various safety-related systems and facilities in NPP. 
However, in the event that safety injection systems 
(SISs) among these systems do not function in time, 
core cooling capability can be lost on account of 
delayed emergency core coolant injection, and 
eventually the risk that reactor core is uncovered and 
damaged can occur. Hence, a technique to predict the 
time for SIS recovery is considered to be needed to 
prevent core uncovery and reactor vessel (RV) failure 
in the LOCA circumstance when SISs do not normally 
work. In this study, the corresponding time is defined 
as golden time. 

As a technique that predicts golden time, deep fuzzy 
neural networks (DFNNs) [1-3] with rule-dropout is 
utilized in the study. Briefly, the rule-dropout DFNN, a 
kind of artificial intelligence technique, is the method 
that syllogistic fuzzy reasoning through multi-
connected fuzzy neural network (FNN) modules is 
simplified and the fuzzy rule number in every single 
FNN module is individually adjusted to efficiently 
improve its inference capability by its multiple modules. 
Simulated data on the postulated LOCAs in which 
safety injection does not normally actuated in 
optimized pressurized reactor 1000 (OPR1000) were 
applied to the rule-dropout DFNN. 

 
2. Deep Fuzzy Neural Networks with Rule-Dropout 

 
2.1 DFNN 

 
The DFNN, which determines an entire network 

structure of the rule-dropout DFNN, consists of more 
than two FNN modules; thus, it takes not only basic 
inference mechanism by FNN but also the structure 
that a result from the previous module is transferred 
into the next module as a fact for syllogistic reasoning 
as the main characteristics. In the DFNN, a result from 
the directly connected former FNN module is 
transmitted into the current FNN module as an 
additional input (refer to Eq. (1)). The DFNN can be 
considered as an efficient method since only one result 
gradually improved through all the FNN modules is 
utilized in the final module. 
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where  ( 1,  2,  ,  )jx j m=   is the input variable,  ijµ  
is the membership function for the i-th fuzzy rule 
( 1,  2,  ,  n)i =   and the j-th input, ˆ ly  is the output 
from the l-th FNN module, and  if  is the consequent 
part of the i-th rule, which is generally a first-order 
polynomial of the inputs as follows: 
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Here, ijq  and ir  are the weighting value of the j-th 
input for the output of the i-th fuzzy rule and the bias 
of the i-th rule output. 

As internal structure of the rule-dropout DFNN, each 
of the FNN module consists of typical five-layer FNN, 
where Takagi-Sugeno type fuzzy inference is 
implemented [4]. In the FNN module, the i-th rule of 
the j-th variable is defined using Gaussian function of 
Eq. (3). 

2 2( ( )) exp( ( ( ) ) / 2 )ij j j ij ijx k x k c sµ = − −  (3) 
where ijc  and ijs  are the center position and the 
sharpness of a Gaussian function, respectively. 

 
2.2 Rule-Dropout DFNN 

 
The existing DFNN can induce overfitting since the 

FNN modules of which the number of fuzzy rules is the 
same are sequentially connected. Hence, the fuzzy rule 
number of each FNN module is individually adjusted 
by the rule-dropout. The rule-dropout determines the 
number of fuzzy rules by dropping out (or maintaining) 
specific fuzzy rules among the entire fuzzy rules, which 
are the same in all the FNN modules. The fuzzy rule 
number to be dropped out is selected using a genetic 
algorithm (GA) [5] finding which fuzzy rules are not 
appropriate. Once the fuzzy rules are dropped out, the 
nodes and connectives on them are eliminated in the 
FNN module.  

In the rule-dropout DFNN, the number of fuzzy rules 
in the former part is usually less than that in the latter 
part. That is, the fuzzy rule number which is 
maintained increases as the FNN module is added. 
Therefore, the rule-dropout DFNN can be established 
as an optimal model by adding the module with proper 
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fuzzy rule number determined while preventing 
overfitting. 

 
2.3 Rule-Dropout DFNN Optimization 

 
The optimization of the overall rule-dropout DFNN 

is basically achieved through module optimization. GA 
and least-squares methods were used to optimize each 
module. The GA was applied to optimize for the 
number of fuzzy rules and the antecedent parameters. 
In addition, the GA used the fitness function of Eq. (4) 
to select the optimal fuzzy rule number and antecedent 
parameter values among candidate groups generated by 
the genetic operation.  
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where α  and β  are negative coefficients. 1tE  and 1vE  
are root mean square (RMS) error for training and 
verification data, respectively. 2tE  and 2vE  are 
maximum error for training and verification data. The 
RMS and maximum errors for training data follow Eqs. 
(5) and (6), and the errors for verification data are 
calculated in the same way. 
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The least-squares method was applied to optimize 
the consequent parameters ijq  and ir  in Eq. (2). ijq  
and ir  were determined by minimizing the following 
Eq. (7): 
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After the FNN module is optimized through GA and 
least-squares, the module identification proceeds by the 
fitness function in Eq. (8). The fitness values calculated 
in the previous module and the current module are 
compared, and it is configured as a primary model only 
when the fitness value of the current module is higher. 

1 1 2 2exp( )all a aF E Eω ω= − −  (8) 
where 1ω  and 2ω  are coefficients for RMS and 
maximum errors for development data, which is 
combining training and verification data. Likewise, 

1aE  and 2aE  are calculated in the same way as Eqs. (5) 
and (6). 

FNN module optimization and identification proceed 
up to the maximum number of FNN modules. The 
maximum number of FNN modules is 15. When the 
number of FNN modules reaches the maximum, the 
final model is determined by selecting the optimal 

number of FNN modules from the primary model 
configured using Eq. (8). 

 
3. Data Preparation 

 
Modular accident analysis program (MAAP) [6] was 

used to simulate the postulated LOCA scenarios for the 
acquisition of the data used for developing a golden 
time prediction model. Specifically, LOCA location, 
delayed operation of high-pressure safety injection 
(HPSI) and low-pressure safety injection (LPSI), and 
pressurizer power-operated relief valve (PORV) 
open/close operation were involved in considered 
scenarios as presented in Table I. In addition, safety 
injection tank and containment spray system were 
assumed to work normally. In Table I, the reason why 
HPSI and LPSI operation is delayed is to find the 
maximum time when core uncovery and RV failure do 
not occur even if the SISs are not functioning in time. 
The range of LOCA break size is from 1/10,000 of 
double-ended guillotine break (DEGB) to DEGB, 
which is divided into 270 cases. Hence, the number of 
270 simulated data on each accident type was acquired 
using the MAAP, respectively. 

To develop the golden time prediction model, 6 
input variables related to core integrity and heat 
removal were applied. The data applied to the training 
were obtained by integrating 30 or 60 or 150 seconds 
after the reactor trip from the total data simulated 
according to the sequence of the accident. In order to 
effectively learn and test the prediction model, the data 
are split into training, verification, and test data.  

 
Table I: Postulated LOCA scenarios 

Accident 
type 1 2 3 4 

LOCA 
location Hot-leg Cold-leg 

HPSI 
operation 

Delay 
injection 

& 
recircula 

-tion 

N/A 

Delay 
injection 

& 
recircula

-tion 

N/A 

LPSI 
operation N/A 

Delay 
injection 

& 
recircula

-tion 

N/A 

Delay 
injection 

& 
recircula

-tion 
PORV Close Open Close Open 

 
4. Prediction Results of Golden Time for SIS 

Recovery 
 

4.1 Prediction Results of Golden Time Using Rule-
Dropout DFNN 
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When predicting the golden time using the 
developed rule-dropout DFNN model, the number of 
optimized fuzzy rules for each module is 2 to 4. In 
general, rule-dropout DFNN has improved inference 
performance as the number of fuzzy rules increases, but 
the number of fuzzy rules is relatively low when 
predicting golden time; it is because it is possible to 
accurately predict the golden time with only a small 
number of fuzzy rules. Rather, as the number of fuzzy 
rules increases, high prediction errors occurred. Fig. 1 
shows the characteristic of rule-dropout DFNN, which 
shows improved prediction performance as the number 
of FNN modules increases. That is, as the FNN module 
increases, the RMS error decreases, and the fitness 
value increases. 

Tables Ⅱ and Ⅲ show the golden time prediction 
performance through the developed rule-dropout 
DFNN model. RMS and maximum errors for test data 
are within about 3.6% and 15.5% in hot-leg LOCA, 
and about 4.2% and 13.3% in cold-leg LOCA. Most of 
the prediction errors are higher when performing 
golden time prediction to prevent RV failure. This is 
because the input data do not change significantly 
when the break size is small, but the prediction value 
fluctuates severely. Figs. 2 and 3 show the prediction 
result of the rule-dropout DFNN model. 
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Fig. 1. RMS error and fitness value according to the number 
of FNN modules (in case of the golden time prediction to 
prevent core uncovery in accident type 1 and 3). 
 

Table Ⅱ: Prediction performance of rule-dropout DFNN 
model (hot-leg LOCA) 

SIS 
operation 

Prevention 
target 

Training data Test data 
RMS 
error 
(%) 

Max. 
error 
(%) 

RMS 
error 
(%) 

Max. 
error 
(%) 

HPSI 
delay 

Core 
uncovery 1.705 5.265 2.784 6.688 

RV failure 5.737 45.846 3.576 15.498 

LPSI 
delay 

Core 
uncovery 0.827 2.093 0.950 1.959 

RV failure 1.239 6.919 3.237 14.706 

 

Table Ⅲ: Prediction performance of rule-dropout DFNN 
model (cold-leg LOCA) 

SIS 
operation 

Prevention 
target 

Training data Test data 
RMS 
error 
(%) 

Max. 
error 
(%) 

RMS 
error 
(%) 

Max. 
error 
(%) 

HPSI 
delay 

Core 
uncovery 1.825 11.070 4.201 13.296 

RV failure 2.809 16.395 2.183 8.141 

LPSI 
delay 

Core 
uncovery 0.269 1.011 0.667 1.969 

RV failure 1.221 7.001 1.856 7.334 
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Fig. 2. Golden time prediction result to prevent core 
uncovery (in case of accident type 2). 
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Fig. 3. Golden time prediction result to prevent RV failure 
(in case of accident type 3). 

 
4.2 Comparison with Prediction Results for Golden 
Time Using Support Vector Regression 

 
The prediction performance of the developed rule-

dropout DFNN model was compared with that of the 
support vector regression (SVR) model. The SVR 
model has the same structure and characteristics as the 
SVR used in the previous study [7], but the applied 
input variables and data are different; it is the same as 
those applied for the rule-dropout DFNN model 
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development. Tables Ⅳ and Ⅴ show the prediction 
performance of SVR model. Overall, the prediction 
error of the rule-dropout DFNN model is lower than 
that of the SVR model. Especially, RMS and maximum 
errors for the case of RV failure prevention are much 
more reduced in the rule-dropout DFNN model.  

The SVR and rule-dropout DFNN models have 
different learning mechanisms. The SVR model is a 
method of determining an optimal regression function 
by mapping training data to feature space of high 
dimension [8], whereas the rule-dropout DFNN model 
performs multi-level learning in which one step ahead 
learning is consistently added to the next learning by 
adding the FNN modules. The main reason why the 
SVR model shows higher error than the rule-dropout 
DFNN model with regard to the golden time prediction 
is considered that it originates from the difference of 
these learning mechanisms for both methods. 

 

Table Ⅳ: Prediction performance of SVR model (hot-leg 
LOCA) 

SIS 
operation 

Prevention 
target 

Training data Test data 
RMS 
error 
(%) 

Max. 
error 
(%) 

RMS 
error 
(%) 

Max. 
error 
(%) 

HPSI 
delay 

Core 
uncovery 0.621 2.854 2.947 4.936 

RV failure 7.336 82.357 1.957 7.137 

LPSI 
delay 

Core 
uncovery 0.033 0.042 4.573 10.970 

RV failure 8.829 69.499 10.774 43.203 

 

Table Ⅴ: Prediction performance of SVR model (cold-leg 
LOCA) 

SIS 
operation 

Prevention 
target 

Training data Test data 
RMS 
error 
(%) 

Max. 
error 
(%) 

RMS 
error 
(%) 

Max. 
error 
(%) 

HPSI 
delay 

Core 
uncovery 0.136 0.270 2.748 8.101 

RV failure 0.966 12.559 9.260 37.431 

LPSI 
delay 

Core 
uncovery 0.235 1.355 3.000 8.566 

RV failure 1.229 15.105 8.818 43.952 
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5. Conclusions 

 

In this study, the golden time for SISs recovery was 
predicted to prevent aggravation of accidents when 
SISs do not operate normally in LOCA situation. Rule-
dropout DFNN model was developed as a technique for 
predicting golden time. Specifically, the rule-dropout 
DFNN model predicted the golden time to prevent core 
uncovery and RV failure. The rule-dropout DFNN 
model accurately predicted the golden time and showed 
a much lower prediction error compared to the SVR 
model. Therefore, the developed rule-dropout DFNN 
model can be utilized as a foundational technique to 
provide the maximum time for the operator to recover 
the SISs when the SISs are not working, and to help 
the operator take action within golden time.  
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