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1. Introduction 

 
After the TMI accident, concern in the human factor 

for safety and efficiency of nuclear power plants has 
increased. Especially emergency situations, operator 
should conduct accurately diagnose plant conditions and 
carry out appropriate responses in limited time. It has 
been pointed out that human error can be effectively 
reduced if a number of measurement and alarm signals 
generated in an emergency situation are automatically 
analyzed and the operation support system, which can 
provide decision making to operator. Operation support 
technology can be implemented using AI techniques. 
These are developing rapidly in algorithms, application 
methods, and at the same time, there is a high possibility 
of innovation and growth through convergence with 
other ICT technologies. AI methodologies have been 
presented and verified by several researchers and 
institutions.  

 
This study aims to predict condition of SMART 

(System-integrated Modular Advanced ReacTor) using 
machine learning AI technologies that can be based on 
operator support techniques. Because SMART adopts 
the passive system depends on the natural forces (e.g., 
gravitational force or natural circulation), of which 
uncertainties are significant, operation support 
technology may be more necessary in the accident 
situation. 

 
For conducting machine learning, the wide range of 

reliable data base (DB) is required. Because there is 
little data from NPPs in the event of accident, so data 
production using computer code simulation should be 
conducted. Prior to data base production, variable 
selection is needed. By selecting representative 
variables that represent plant phenomena for machine 
learning, the accuracy of prediction and the efficiency of 
computation can be increased.  

 
The machine learning is conducted using long short-

term memory (LSTM) methodology. LSTM is a unique 
type of recurrent neural network (RNN) capable of 
learning long-term dependencies, which is useful for 
certain types of prediction that require the network to 
retain information over longer time periods, a task that 
traditional RNNs struggle with. LSTMs use gated cells 
to store information outside the regular flow of the RNN. 
With these cells, the network can manipulate the 
information in many ways, including storing information 

in the cells and reading from them. The cells are 
individually capable of making decisions regarding the 
information and can execute these decisions by opening 
or closing the gates. 

 
2. Passive Safety System in SMART 

 
2.1 PSIS (Passive Safety Injection System) 
 

The PSIS prevents core uncovery in case of a small 
break loss-of-coolant accident (SBLOCA) by injecting 
water into the RCS and removes heat from the core. The 
PSIS consists of four mechanically independent trains, 
and each train is composed of one core makeup tank 
(CMT) and one safety injection tank (SIT). The core 
makeup tank (CMT) injects the emergency boric acid 
solution into the reactor coolant system by the gravity 
under the high temperature and pressure condition 
during the system operation. The safety injection tank 
prevents uncovering of the core by supplying 
emergency cooling water and secures core cooling 
capacity for at least 72 hours in the event of a loss of 
coolant accident. The schematic of PSIS presents in 
Figure 1. 

 

 
Figure 1.The Schematic of PSIS 

 
2.2 PRHRS (Passive Residual Heat Removal System) 

 
The PRHRS removes the RCS heat by natural 

circulation in emergency situations where normal steam 
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extraction or feedwater supply is unavailable. The 
PRHRS cools the RCS to the safe shutdown condition 
after the accident initiation. The safety function is 
performed for at least 72 hours without any corrective 
action by operator or the aid of external AC power. The 
PRHRS consists of four independent trains and each 
train is composed of one emergency cooldown tank 
(ECT), one PRHRS heat exchanger (PHX) add one 
PRHRS makeup tank (PMT). Each train is connected to 
a set of two steam generators (SGs). Figure 2 presents 
the schematic of PRHRS. 

 

 
Figure 2.The Schematic of PRHRS 

 
3. Variable Selection 

 
The thermal hydraulic behavior of SMART can be 

identified from the equation of mass & energy balance 
equations. The variables for machine learning are 
selected considering these equations. When selecting 
variables, passive safety system of SMART such as 
PSIS (passive safety injection system) and PRHRS 
(passive residual heat removal system) is considered. 
 
3.1 Mass Balance 
 

The mass balance of SMART can be simply 
determined as considering inflow by PSIS, Mass release 
of break and PSV. Mass balance equation of reactor 
pressure vessel (RPV) can be made as follows. 

 

net CMT SIT b P.m m m m m= + - -& & & & &   
 

netm&  : Total Mass Change in RPV 

bm&  : Mass Release from Break [kg/s] 

Pm&  : Flow Rate of Released Coolant by PSV [kg/s] 

CMTm&  : Injected coolant flow rate from CMT [kg/s] 

SITm&  : Injected coolant flow rate from SIT [kg/s] 
 
 

3.2 Energy Balance 
 

The core decay heat in the RCS is delivered to the 
PRHRS through the steam generator (SG) and the 
delivered residual heat is removed by the condensation 
heat transfer from the PRHRS heat exchanger to the 
coolant in the emergency cooling tank (ECT) through 
the natural circulation. This process presents in Figure 3. 
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Figure 3.Schematic of the Energy Balance of SMART 

 
Energy Balance can be established as the following 

equation.  
 
Primary Side Heat Balance 

0 1 PSV 0 break 0 1q q m h m h C- - - =& &  
 
Secondary Side Heat Balance 

1 2 2q q C- =  
 

0q  : Core Decay Heat [W] 

1q  : S/G Heat Removal [W] 

2q  : PRHRS Heat Removal [W] 

0h  : Enthalpy of RCS [J/kg] 

PSVh  : Enthalpy of Released Coolant by PSV [kg/s] 
 
3.3 Variable Selection 
 

Variables utilized in machine learning are selected 
considering the mass energy balance in SMART. The 
change in mass of RPV, CMT, SIT ( netm& , CMTm& , SITm& ) 
can be determined by checking these levels. Mass 
release rate from break and PSV ( bm& , Pm& ) is 
determined by thermos dynamic state of RCS. The heat 
removal of the steam generator ( 1q ) is made by boiling 
heat transfer, which is determined by the 
thermodynamic conditions and flow rate of the RCS and 
the secondary system. And the PRHRS heat removal 
( 2q ) is made by condensation heat transfer, which is 
determined by the thermos-dynamic conditions of the 
secondary system. The 25 thermal hydraulic variables 
are selected for machine learning. And variable lists 
present in Table 1. 
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Table 1.Selected Variable for Machine Learning 
Number Selected Variable 

1 Reactor Pressure Vessel Level 
2 Core Make up Tank (CMT) #1 Level 
3 Core Make up Tank (CMT) #2 Level 
4 Core Make up Tank (CMT) #3 Level 
5 Core Make up Tank (CMT) #4 Level 
6 Safety Injection Tank (SIT) #1 Level 
7 Safety Injection Tank (SIT) #2 Level 
8 Safety Injection Tank (SIT) #3 Level 
9 Safety Injection Tank (SIT) #4 Level 

10 Pressurizer Pressure 
11 Pressurizer Temperature 
12 RCS Flow Rate 
13 Core Power 
14 Main Steam Line #1 Pressure 
15 Main Steam Line #2 Pressure 
16 Main Steam Line #3 Pressure 
17 Main Steam Line #4 Pressure 
18 Main Steam Line #1 Temperature 
19 Main Steam Line #2 Temperature 
20 Main Steam Line #3 Temperature 
21 Main Steam Line #4 Temperature 
22 Main Steam Line #1 Flow Rate 
23 Main Steam Line #1 Flow Rate 
24 Main Steam Line #1 Flow Rate 
25 Main Steam Line #1 Flow Rate 

 
4. The Numerical Demonstration 

 
4.1 Selection of Accident Scenario 
 

The first case is the prediction of plant condition in 
small break loss of coolant accident (SBLOCA) due to 
25 mm crack. This scenario is proper to evaluate the 
passive safety system, because both PSIS and PRHRS 
are actuated. In this case, machine learning data for 
prediction, is SBLOCA due to 50 mm guillotine break 
with 2 PSIS and loss of main feedwater (LOMF) with 2 
PRHRS. 

 
The second case is the prediction of plant condition 

in steam generator tube rupture (SGTR). This scenario 
is proper for predicting plant state in unstable 
hydrothermal behavior. It is assumed that any safety 
feature is not available in this scenario, RCS pressure 
and temperature is fluctuating due to PSV operation. 
Machine learning data for prediction is used as half of 
the initial data in this case. 

 
The data base for prediction and machine learning 

are produced using MARS-KS thermal hydraulic 

computation analysis program and cases are presented 
in Table 2.  

 

Table 2.Machine Learning and Prediction Cases 
No Machine Learning Prediction  

1 

SBLOCA 
- 50mm break 
- 2 PSIS Actuation 

SBLOCA 
- 25mm break 
- 2 PSIS Actuation 
- 2 PRHRS Actuation 

LOMF 
- 50mm break 
- 2 PRHRS Actuation 

2 SGTR 
(0~129,500 s) 

SGTR 
(129,500 ~259,000 s) 

 

 
4.2 Machine Learning using LSTM 

 
Simulation time of each accident case is 3 day 

(259,000) and time step is 100 sec. The data of 2,590 
rows are used for each accident analysis case. 

Number of epochs and batch size are set as 80 and 5, 
respectively. One epoch is when an entire dataset is 
passed forward and backward through the neural 
network only once. Batch size means divided dataset 
into number of batches or sets or parts. Machine 
learning is conducted with 41,440 (2590 / 5ⅹ80) 
iterations per accident case as shown in Figure 4. 

 
Total Data : 2590
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Figure 4.Schematic of Machine Learning 

 
4.3 The Analysis Result 

 
In the first case, coolant is discharged and the RCS 

pressure decreases rapidly through the break. The low 
pressurizer pressure signal activates PSIS (Passive 
Safety Injection) and the highly borated water is 
injected into the annulus in the reactor pressure vessel 
by the gravity. Simultaneously with the reactor trip, 
the RCPs begin to coast down and the feedwater 
pumps stop. In this case, it is assumed that 2 PSIS and 
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2 PRHRS is available. Figure 5 and 6 present the 
above result and the result is similar between the 
actual values and the prediction values. 

 
The second case is RCS pressure prediction in 

SGTR. An SGTR is the result of a rupture of a once-
through helical tube. If an SGTR takes place, reactor 
and RCP is tripped by a low PZR pressure or a high 
steam line pressure. And the passive residual heat 
removal is activated by the low feedwater flow rate 
signal. However PRHRS is assumed to be unavailable 
in this case. So the RCS pressure is increasing due to 
loss of heat removal and PSV repeats open-close 
cycling. The data of SGTR accident analysis for 
machine learning of 259,000 seconds are used. For 
learning up to 124,500 seconds, and RCS pressure is 
predicted up to 259,000 seconds. Figure 7 presents the 
above result. The trends are predicted similarly, but 
there is a slight difference between the actual data and 
the prediction values. 
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Figure 5.Pressure Prediction in SBLOCA 

0 50000 100000 150000 200000 250000
0.0

0.2

0.4

0.6

0.8

1.0

R
C

S 
Te

m
pe

ra
tu

re
 (2

5 
m

m
 S

BL
O

C
A)

Time [s]

 Actual
 Prediction

 
Figure 6.Temperature Prediction in SBLOCA 
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Figure 7.Pressure Prediction in SGTR 

 
5. Conclusions 

 
Plant condition prediction using machine learning is 

conducted using accident analysis data and LSTM 
methodology.  

 
The essential variables including passive safety 

system for machine learning based on the physics, and 
plant condition prediction using machine learning is 
conducted. As a result, the actual and predicted values 
are similar.  

 
And physical-based analysis using thermal hydraulic 

codes requires a lot of time, but AI enables high-speed 
prediction. Therefore, this technology can be used for 
real-time and optimization analysis and it can be based 
on operator support systems or autonomous nuclear 
technology. 
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