Considerations for Nuclear Power Plant Decommissioning Project Management and Areas to be Managed

Hyung-woo Seo^{a*}, Sang hyun Lee^a, Ji-hwan Yu^a, and Gi-lim Kim^a

^aKorea Hydro & Nuclear Power (KHNP) Central Research Institute, 70, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon, 34101, Republic of Korea *Corresponding author: sehywo1727@khnp.co.kr

1. Introduction

For licensees who have no experience in dismantling nuclear facilities, there will be some considerations in order to manage the decommissioning project efficiently. In Korea, we have experience in project management in the field of NPP (Nuclear Power Plant) construction and operation, and from this, there will be parts that will be applied to the decommissioning project. However, decommissioning project needs to reflect its unique characteristics different from the existing construction and operation, and the management area and project management based on these considerations will have to be made. Therefore, this study aims to present matters to be considered and management areas for the decommissioning project based on international guides and references.

2. Methods and Results

This section describes some considerations related to decommissioning project management presented in IAEA safety standards and some other related technical documentations.

2.1 Differences between decommissioning and operational states

The NPP decommissioning project is to dismantle on a large scale after permanent shutdown of systems, structures and components that have been built and operated during the construction and operation phase. The decommissioning of such large nuclear facilities will proceed differently from various viewpoints, and in general, important considerations can be describe as follows [1].

- Planning strategy
- Safety
- Work approaches
- Staffing
- Organization and management while preparing
- Organization and management during transition
- Organization and management for active phase
- Organization and management for safe enclosure
- Organization and management for remediation
- Spent fuel and waste storage routes

These important considerations may be due to the fact that the decommissioning of nuclear facilities is different from the operational management system. The difference between decommissioning and operational states can be elaborated as shown in the table below.

Table I: Differences between Decommissioning and Operational States [1]

	-
Decommissioning	Operations
Temporary design life of structures to assist dismantling	Permanent design of structures for operation
Safety management systems based on decommissioning tasks	Safety management systems on operating nuclear facility
Control based on as-built structures	Control based on drawings
Reduced safety risks but changing situation	Significant safety risks but permanent and routine
Management of changing situation during decommissioning	Management of steady state during operation
Reduced administrative infrastructure	Steady state administration infrastructure
Retraining staff for new activities	Routine training and refresher training
Visible end of employment-refocus their work objective	Permanent employment with routine objectives
New or developing regulations/regulatory requirements	Established and developed regulations for operation

2.2 Project Management Guidance

Project management guidance available worldwide that can be referred to will be IAEA publications. In particular, GSR Part 2 (Leadership and Management for Safety) provides guidelines applicable to decommissioning projects. Selected requirements from GSR Part 2 and their applicability to nuclear facilities project management is summarized in IAEA publication [2]. Among these requirements, matters to be considered in relation to decommissioning can be established, and in particular, it will be possible to review parts that need to be newly or supplemented as they are distinguished from other nuclear projects.

Nuclear Project Management [2]		
Requirement	Applicable to project management	
Requirement 1: Achieving	Requires licensees to	
the fundamental safety	ensure the fundamental	
objective	safety objective	
Bequirement 2:	surery objective	
Demonstration of	Requires managers to	
landership for safety by	demonstrate leadership	
managara	and commitment to safety	
Indiagers	Paguiras sonior	
Requirement 3:	management to establish	
Responsibility of senior	management to establish,	
management for the		
management system	system for safety	
Paguiramant 4: Goala	Beguires pueleer power	
strategies plans and	project goals to not	
objectives	compromise sefety	
objectives	Dequires that	
Requirement 5: Interaction	Requires that	
with interested parties	interested portion	
	De miner sustance te	
Dequirement 6: Integration	address safety health	
of the management system	address safety, health,	
of the management system	security, quality, numan	
	Creded engrase the area to	
Requirement 7:	be decumented that take	
Application of the graded	into account sofaty	
approach to the	into account safety	
management system	significance and	
	Complexity	
Requirement 8:	Requires the management	
Documentation of the	system for a nuclear	
management system	project be documented	
	requires resources such as	
Description and Or Dressision	individuals, work	
Requirement 9: Provision	information and line	
of resources	information, suppliers,	
	material and financial	
De automa ent 10:	Perminent and and and a	
Requirement 10:	Requires project processes	
and activitios	developed	
Paguirament 11:	Poquiros arrangaments to	
Management of the supply	he in place with vendors	
chain	and contractors	
Requirement 12: Fostering	Requires individuals in	
a culture for safety	organization	
Requirement 13	orgunization	
Measurement assessment	Requires management	
and improvement of the	systems to enhance safety	
management system	performance	
Requirement 14:	Requires senior	
Measurement, assessment	management to regularly	
and improvement of	commission assessments	

II: Selected GSR Part 2 Requirements Related to	
Nuclear Project Management [2]	

Table

leadership for safety and of	
safety culture	

2.3 Areas to be Managed in Nuclear Projects

The areas of management that normally be considered and contents considered in an example case are summarized in following table.

Table III: Areas to be managed between guideline and an	
example	

	-
Areas to be considered in nuclear project [2]	An example case in decommissioning [3]
Areas to be considered in nuclear project [2] Integration Scope Time Cost Quality Human resources Communications Stakeholders and interested parties Risk Procurement Health safety &	 An example case in decommissioning [3] Dismantling planning Exposure dose evaluation Dismantling support Health and safety Decontamination management Human resource and procurement Surveillance & security
 Health, safety & environment Lessons learned and operating experience 	 Radwaste management Radwaste storage & final repository

3. Conclusions

In Korea, decommissioning of nuclear facilities will be implemented in the near future and differentiation will be required from projects undertaken in existing operations and construction. In order to prepare and carry out a successful decommissioning project, IAEA guidelines, related publications and cases of overseas prior decommissioning experience must be reviewed. In this study, factors to be considered in nuclear projects and the contents of management areas were investigated. A case that actually experienced decommissioning was also reviewed, and the management areas were compared. We hope that these contents can be utilized as basic data on factors and areas to be managed while preparing for nuclear decommissioning project.

REFERENCES

[1] IAEA, Organization and Management for Decommissioning of Large Nuclear Facilities, Technical Reports Series No. 399, International Atomic Energy Agency, VIENNA, 2001.

[2] IAEA, Management of Nuclear Power Plant Projects, No. NG-T-1.6, International Atomic Energy Agency, p.15, 2020.

[3] I. H. Chou, C. F. Fan, Development Integrated Decommissioning Information Management System (IDIMS) of Nuclear Facilities, Journal of Nuclear Science and Technology, 2012.