Effect of Power Distribution Change on T/H Parameters with CUPID Alone Calculation

SA&PHWR Safety Research Division at KAERI

Eunhyun Ryu and Jong Yub Jung

May 14, 2021

Contents

Background

Problem Description

- Geometry
- Material
- Mesh
- Boundary Condition
- Power Profile

□ Numerical Results

- Fuel Temperatures for Reference Case
- Pressure Tube and Calandria Tube Temperatures
- Coolant Temperatures for Reference Case
- Coolant Void Fraction for Reference Case
- Global Results
- □ Conclusions
- □ References

□ Appendice

- Dimensions
- Boundary Condition for Radial Direction
- Iteration Condition
- T/H Condition
- Calculation Resource
- Mesh Quality Control

Background

Fig. 2 Reduction Trend of Operational Margin wrt PT diameter expansion

□ Rough Calculation to Predict CHF

- Observation of Mass Flow Rate, Quality and Pressure for Virtual Aged Case
 - Only power distribution change among various factors is consider in this research to confirm the normal operation of the CUPID code and starting point of the work

Geometry

Figure 3. Problem Modeling with CATIA and Salome

□ Modeling Sequence

- CATIA modeling
- STP file export
- Salome import

□ Material Assignment

Table 3. Material Assignment of CUPID Calculation

	Reality	CUPID
Fuel	UO_2 +He+Zr4	Volume Weighted Material (solid 10)
Coolant	D ₂ O(99% purity)	D ₂ O
Pressure Tube	Zr-Nb	Stainless Steel ¹⁾ (solid 4)
Gap	CO ₂	Air ²⁾ (ncg 6)
Calandria Tube	Zr-2	Stainless Steel ¹⁾ (solid 4)

- 1) Stainless Steel will be replaced with Zr in CUPID material list
- 2) It was difficult to CO₂ Related Properties such as rax, dcvax, cvaox and so on. (consulted with Dr. Ha kwi Seok, Dr. Cho Yun Je)

Mesh

D 2D Extrusion in Salome

Figure 4. Radial and Axial Plot of the Mesh

- A total of 65,550 nodes, 119,472 (prism, 4978 X 24) volumes, 24 axial levels in 3-D space
- A total of 4,978 triangles in radial cross section

Boundary Condition

- No Axial Heat Transfer by Conduction through Solid Surfaces
 - In reality, the amount of heat loss through axial solid surfaces may certainly exist.
 - But it is assumed that the portion of heat loss through axial solid surfaces is not that big enough to affect to the overall calculation, specially for the purpose of this study
 - In the future, the boundary condition can be consider as constant T, but it should be verified that the CUPID code capable of that boundary condition for axial direction.

Boundary Condition

□ Side Surfaces

• Constant T wall

- 69 celsius degree in Physics design manual

Power Profile

□ Axial Profile

• Channel-wise Averaged Axial Power Profile

Figure 7. Axial Power and Burnup Profiles

- Almost cosine shape but a little top skewed
- Burnup rise up again at the end of channel because of 8 bundle shift scheme

Power Profile

• Estimated Vs. Proposed (Cosine Shape) Powers for Target Channel

- Wolsong Unit 1, Q07 Channel was selected (procedure omitted, but the magnitude of deformation and channel power were standard for selection)
- Estimated Flux is used instead of Power, it will be corrected in the future, but the results will not be different from each other

Power Profile

KAERI

Fuel Temperatures for Reference Case

□ Fuel Temperature

Figure 10. Fuel Temperature for Cross Section 1~6

Fuel Temperatures for Reference Case

□ Fuel Temperature

Figure 11. Fuel Temperature for Cross Section 7~12

Pressure Tube and Calandria Tube Temperatures

□ PT and CT

		РТ		СТ			
Bundle	(38	-th solid regio	on)	(39-th solid region)			
		CUI	PID		CUPID		
muex		Ref. Case	Def. Case		Ref. Case	Def. Case	
	(K)	(K)	(K)	(K)	(K)	(K)	
1		534.03	534.03		342.65	342.65	
2		535.66	535.65	342.15	342.62	342.62	
3		538.92	538.88		342.61	342.61	
4		543.38	543.29		342.61	342.61	
5		548.64	548.50		342.61	342.61	
6		554.32	554.12		342.62	342.62	
7	561.15	559.81	559.58		342.63	342.63	
8		565.03	564.75		342.64	342.64	
9		569.70	569.33		342.65	342.65	
10		573.26	572.93		342.66	342.66	
11	-	575.62	575.24		342.67	342.67	
12		576.47	576.04		342.68	342.68	
Average		556.24	556.03		342.64	342.64	

Table 8. Temperature of PT and CT

Coolant Temperatures for Reference Case

□ Coolant Temperature

Figure 12. Coolant Temperature for Cross Section 1~6

Coolant Temperatures for Reference Case

□ Coolant Temperature

Figure 13. Coolant Temperature for Cross Section 7~12

Coolant Void Fraction for Reference Case

□ Coolant Void Fraction

Coolant Void Fraction for Reference Case

□ Coolant Void Fraction

Global Results

Table 9. Various Global Errors for Fuel Temp., Coolant Temp, and

□ **RMSE** and Relative Errors

Coolant Density								
	Fuel Temperature	Coolant Temperature	Coolant Density					
RMSE	8.49K	0.99K	2.66kg/m ³					
MAXimum Error	MAXimum Error 4.17%		0.33%					
(MAXE)	(MAXE) (34.04K)		(2.53kg/m ³)					
MAXE Position	7-th Bundle, 1-th Fuel	8-th Bundle, 6-th S.C.	8-th Bundle, 22-th S.C					
MINimum Error -1.03%		-0.16%	-1.82%					
(MINE) (-8.66K)		(-0.92K)	(-13.72kg/m ³)					
MINE Position	6-th Bundle, 8-th Fuel	8-th Bundle, 22th S.C.	8-th Bundle, 6-th S.C.					

- By considering that the power change is enlarged compared with the magnitude of real aged channel power, global changes should be approximately divided by 6. Then, we can face that the fuel temperature, coolant temperature, coolant density changes are globally just about 1.4K, 0.16K, 0.44kg/m³ as well as MAXE and MINE.
- By taking into account of small change in magnitude, although there is local issues arising from sub-channel analysis, it seems that impact of pressure tube aging is not a significant threat to the channel in the normal operation.
- A cause of worry is that void appear one bundle earlier for the deformed case. If we take a look into cell wise results it may be more earlier. Also, deformed case can have many cells which have fluid temperature over saturation temperature for bundle near from the entrance

Conclusions

□ Solid Temperatures

• Axially Bottom Skewed Fuel Temperature Distribution

- Although we have axial symmetry on power, the coolant temperatures near from the bottom are higher than those around inlet. Thus the magnitude of heat transfer from solid to coolant is smaller because of large temperature difference
- Global Fuel Temperature Distribution
 - Globally, fuel temperature distribution follows the power distribution
- Pressure Tube and Calandria Tube Temperatures
 - Matched with temperatures in design document such as Physics Design Manual

Fluid Temperatures

- Monotonic Increase along Axial Direction
 - Almost reaches to the saturation temperature, in several region fluid temperature exceed the saturation temperature (CUPID problem)
- High temperatures around Central Region and Gravity Direction
 - Because of narrow fluid area (or volume), those region encounter danger of CHF.
- Gap Temperature between Pressure Tube and Calandria Tube
 - Matched with temperatures in design document such as Physics Design Manual as pressure tube and calandria tube temperatures

Conclusions

Void Fraction

Almost Zero during Most of the Simulation Time and Regions

- After fuel surface temperature exceed the fluid temperature which is stick with the solid, void can be generated. But the temperature difference should be large enough to generation void
- Regionally, most of the region is void free for almost time and region, but the subchannel region around the center pin and end regions along gravity direction has relatively small flow area compared with those of other regions. Due to this reason, the temperature and void fraction in these regions are much higher compared with those of other regions

• Channel Dependent Property

- Although we have almost zero void fraction in this problem, the void fraction varies from channel to channel.

□ Global Results

- Negligible Effect from Power Distribution Change
 - Even though we amplified 6 times the power distribution change compared with real magnitude of change, there were not significant changes in those parameters.
- Incorporate Other Factors in the Future
 - Near future, geometric effect, feedback effect will be taken into account to the analysis

- KHNP, "CANDU 6 Generating Station Physics Design Manual", 2009.
- □ H.K.Cho, "Nuclear Systems Engineering Lecture Material 1-1", 2017.
- □ H.K.Cho, "Nuclear Systems Engineering Lecture Material 1-2", 2017.
- □ Sunil, "PTCRACK", documentation, 19 Dec 2019.
- □ KHNP, "Wolsong Unit 2 FSAR"
- C.Yoon, J.S.Jeon, J.H.Park, "NUCIRC Single Channel Analysis for Calculating the Power Coefficient of Wolsong Unit 1", KAERI/TR-3740, 2009.
- □ J.H.Park, "Introduction to CANDU", 2011.
- E.H.Ryu, "Introduction to Various Structure Distortions in Nuclear Reactors"

Dimensions

□ Several Dimensions

Table A. PT, CT and Bundle

Structure	Value
PT inside Radius	5.1689cm
PT outside Radius	5.6032cm
CT inside Radius	6.4478cm
CT outside Radius	6.5875cm
Bundle Length	49.53cm

Rod Х У Index (mm)(mm) 1 0 0 7.5202 42.6491 20 2 7.4423 12.8904 21 21.6535 37.505 3 14.8845 0 22 33.1751 27.8372 7.4423 -12.8904 4 23 40.6953 14.8119 5 -7.4423 -12.8904 24 43.307 0 6 -14.8845 0 25 40.6953 -14.8119 7 -7.4423 12.8904 26 33.1751 -27.8372 7.4418 27.7733 21.6535 -37.505 8 27 9 20.3314 20.3314 28 7.5202 -42.6491 7.4418 10 27.7733 29 -7.5202 -42.6491 27.7733 -7.4418 30 -21.6535 -37.505 11 12 20.3314 -20.3314 31 -33.1751 -27.8372 32 -14.8119 13 7.4418 -27.7733 -40.6953 -7.4418 14 -27.7733 33 -43.307 0 15 -20.3314 -20.3314 -40.6953 14.8119 34 16 -27.7733 -7.4418 35 -33.1751 27.8372 17 -27.7733 7.4418 36 -21.6535 37.505

Table B. Fuel Rod Center Positions

18

19

-20.3314

-7.4418

20.3314

27.7733

37

-7.5202

42.6491

Boundary Condition for Radial Direction

□ Side Surfaces

• Solid and Fluid Interfaces

Figure B. Fuel and Coolant Interface(solidf1)

Figure D. Pressure Tube and Gap Interface(solidf3)

Error Condition Definition

Figure F. Time Axis and Error Condition

$$E_{x}^{n} = \frac{1}{\Delta t_{CUPID}^{n}} \sqrt{\frac{\sum_{i=1}^{12} \sum_{j=1}^{p(x)} V_{j,i}(x) \left(x_{j,i}^{n} - x_{j,i}^{n-1}\right)}{\sum_{i=1}^{12} \sum_{j=1}^{p(x)} V_{j,i}(x)}}, \left\{x = T_{solid}, T_{fluid}, \rho_{fluid}\right\}}$$

$$C_{x} > E_{x}^{n}$$

- Where, n is time index, i is bundle index, j is radial region index, delta t is size of time interval which is used in the CUPID code, E is self-determined error parameter, C is self-determined convergence criteria which is set as 0.3, 0.2, 0.4 currently.
- Speed of solid temperature convergence is most slow. And this is somewhat loosen to see result fast.
- Tried to set up parameter which catches global change

□ Values for Two Fluid Zone

Table C. T/H Values for Coolant Region

	Initial Value	Inlet	Outlet		Initial Value	Inlet Condition	Outlet Condition
	value	Condition	Condition		Value	Contantion	Condition
Pressure (Pa)	11.4	4E6	10.0E6	Pressure (Pa)	221325		201325
Liq. Temp. (Kelvin)	535	5.61	N/A	Liq. Temp. (Kelvin)	451	451.65	
Gas Temp. (Kelvin)	535	535.61		Gas Temp. (Kelvin)	451.6		N/A
Void Fraction	0.	.0	N/A	Void Fraction	1	.0	N/A
NCG Quality	0.	.0	0.0	NCG Quality	1.0		1.0
Velocity (m/s)	8.37	229	N/A	Velocity (m/s)	16.6458		N/A

Table D. T/H Values for Gap(CO₂) Region

- Pressure drop for gap region is specified well, in the future, maybe we can find exact value, namely 201,325 for outer condition is temporal value.
- Basic fluid is D₂O but because void fraction and NCG quality are 1.0 and 1.0 respectively, there is no D₂O actually in the gap region

Calculation Resource

- Intel® Core™ i7-8700 CPU @ 3.20GHz 3.19 GHz
- 2 Threads per Core
- Hyper Threading AUTO
- - MPICH2
- Command Line
 - mpiexec –n 12 CUPID
- □ **Results**
 - 147.019 hours for reference case (over 6 days)
 - 147.320 hours for deformed case (over 6 days)

□ Near Future

Table E. Prediction of Calculation Time Change for a Case

ʻiheatpart' Usage	Linux compile	Geometry Reflection	Feedback Inclusion	Mesh Quality Control	Increase # of Core	Implicit Option Usage with high CFL	Summation
-	+	-		+	++	+	??

Mesh Quality Control

□ Mesh Quality

• Skewness (recommend less than 30)

4978

3159

- Growth Rate (recommend less than 5%)
 - Possible to control in sub mesh option
 - Hypothesis->NETGEN parameters->fineness->moderate to custm

