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Background of review for the SFUEL code

» The growing storage density requires more packed configuration of spent fuel
arrangement within the spent fuel pool.

» It make the concerns on the safety for the spent fuel facility increase

» To evaluate the safety of such facility from severe accident, it needs to define
the scope of postulated accident from the spent fuel pool

» The scope of accident was only limited to a complete drainage accident
although the possibility of its occurrence may be extremely low (~1.0E-6/yr).

» Itis because that its consequence are expected to be quite high.

» To facilitate the assessment of the safety and understand the conceptual
design on the spent fuel pool against the severe accident under the complete
drainage condition, itis recommended to develop a parametric tool.

» The purpose of this study is to get an insight to develop a parametric fast running
tool for simulating a severe accident from spent fuel pool under the complete
drainage condition.

» SUEL code, which was developed by SNL was selected as the reference code
and The governing models such as the natural circulation of air in the channel
and the oxidation of cladding by air were reviewed in this study.
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Nodalization of spent fuel pool 4

» The region where the fuel bundles are arranged were divided into
several annular rings (6 rings). Each annular rings are characterized
symmetrically by the different decay heat levels.

» The annular ring consist of fuel bundles, channel box, top and bottom
support plate, rack , bottom floor and side wallls.

» Openspace above the pool was lumped together as a large
containment region. inment

ent wall

Containment space

k wall

_,
@
0
Containm

Narrow space between racks

[y
5

5/25/2021




Governing equations for air flow .

Air out flow mass = air inflow mass — oxygen consumption

top_end o top_end o
M= > m

Per rings

Pressure diffence = gravity head + friction head + friction through hole in plate

Enthalpy change rate = (enthalpy_in) —(enthalpy_out)
- (enthalpy for the oxygen consumed in ox-reaction)
+ (convection heat from structures to air flows channels)
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Prediction of air flow In the channels ¢

» Inlet mass flow rates were assumed.
» Conservation equations are solved for each channel.

» Resulting exit pressuresobtained for upward directed vertical flows
are compared with the pressure in the room above.

» Exit pressures obtained for downward directed vertical flows are
compared with the calculated base floor pressure.

» Thereafter, the assumed inlet mass flow rates are adjusted in an
iterative manner, using the ‘modified Newton-Raphson method’ until
the pressure difference are become to negligibly small for each flow
at exit.
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Overall Heat transfers
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1= top plate

a= containment atmosphere

r= fuel rod

C= bundle channel box

al= channel fluid

2= bottom plate

|2= bottom floor liner

a4= fluid in between bottom plate and floor
f= bottom floor concrete

h=rack, h’= adjacent rack

az2= fluid between channel box and rack
|l1= side wall liner

a3= fluid between outermost rack and side wall

W= side concrete wall
dec, chem, cond= decay, oxidation heat & axial conduct




Fuel rod temperatures in the center ring 9
from SFUEL code
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This calculation was terminated at 100,000 sec unfortunately. The air oxidation was not yet started.
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Air oxidation equation in SFUEL code g
( parabolic rate law: O, rich )

/Zr+ 0, —» Zr0O,

Koexp (-Ea/RT)

parabolic

weight gain (md 02 per cmz)

time (seconds)
activation energy (cal)
gas constant = 1.987 cal/°K

temperature: (°K)
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10

Based on mg-O,/cm?

1.15 x 105, E_ = 27340 (T < 920°C)
7

a |
5.76 x 10, E, = 52990 (920°C < T « 1155°C)

6.20 x 103, E_ = 29077 (T >1155°C)

2 2 ~E,/RT
Wi =W, + l'<oe At Based on mg-O, consumed/cm?

We = Wg 4 C1e_CZ/TA’[ Based on mg-Zr consumed/cm?

20215t AKX e} e| EAH =2 B3| 5/25/2021




Zircaloy Air Oxidation correlation vs T
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Rate coef/eqt & convert to oxide thickness

Temperature range [K] | Ci1[ (mg Zr/cm?)2*s1] C2 (=Ea/R) [K]
[ ] [cal/(1.987cal/K)]

T< 1193 9340 (1150)

1193< T < 1429 4.68E+8 (5.76E+7)
1429 < T 5.04E+5 (6.2E+4)

. —-C,/T : =[ (zr-mg/cm?)? S1]
RATEK = C1e ° = [ (0-mg/cm2)2 5]

w? = w2 + Ce At RCN? = RCT? + RATEK * At ey

RCT [ mg-Zr/cm?], Calcul ‘RATEK’ using above table values !!!

Divide both sides of eqt(1) by (p, )’

20219t AR5t EA St Y ET|

=20/ 2021



RCN=[ mg-Zr/cm?] RCN= [em] 13

2 2 EK * At
RCN" _ RCT, | RATEK = At RCN? = RCT? + RATEK * At

2 2 2
Pa Pa Pa

Rate of increase for the oxide thickness

(RCN - RCT)
Dox = [cm/s]

At
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Oxidation heat generation per mole of reacted Zr with oxygen

262 Kcal/ mole Zr reacted

<- Melcor, RM COR-RM-80,

The same with 2rO,/0O, reacticn heat
1.2065E+7 J/Kg-Zr
DELH [J/cm] = i

n'l-r-

= [kcal/mol-Zr]*[J/kcal]/[g/mole-Zr]*[g/cm?3]*[unit surface area=1¢M?]
= 262*4186.8/(91.22)*{(6500)*103 /(106)*1
= 7.8164003E+4 [J/cm]

Oxidation Heat Generation Rate from clad per unit surf-area

Qc= DELH*|l  [W]



Table of density for Zircaloy oxide 15

Temperature [K] Density [kg/m3]

Table of density for Zircaloy = 6500 kg/m?
One mole of Zr=91.22 g
One mole of O,=32 g S
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Select mode of reaction rate 16

adw dw .
E > E Select Parabolic eqt
parabolic aiffusion

(dwj 3 (dw] 3 ;
. . elect Diffusion eqgt
d t parabolic d t aifrusion
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Results and summary 17

» The model to get the distribution of air flows in the channel can have a
crucial effect on the overall thermal behaviors including the selection of
heat transfer coefficients and the amount of air oxidation.

» In SFUEL code, “modified Newton-Raphson” method was applied to get
the information on the air flows in the channel but it shows instability
sometimes depending on the initial guessed mass flow rate for eacxh
channel.

» It needs that more stable method to get the air flows in the channel to be
developed for the fast running tool.
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