

A Brief Review of Linear Support Vector Machine for Machine Learning

Programming

Yong Suk Suh*, Seung Ki Shin, Dane Baang, Sang Mun Seo, Jong Bok Lee

Kijang Research Reactor Design and Construction Project Div., Korea Atomic Energy Research Institute

(KAERI), 111, Daedeok-Daero 989Beon-Gil, Yuseong-Gu, Daejeon, 34057, Korea
*Corresponding author: yssuh@kaeri.re.kr

1. Introduction

For the data classification in supervised machine

learning programming, logistic regression can be used.

Logistic regression was briefly reviewed in previous

papers [1], [2] and [3]. Logistic regression is based on the

logistic (i.e., sigmoid) function which is derived from the

logit function and classifies input data into one of two

states with a threshold that is given by the programmer.

Logistic regression represents the data classification in the

form of probabilistic scores between 0 and 1. When we do

not want the probabilistic scores, support vector machine

(SVM) can be used for the data classification [4]. Thus,

SVM is an alternative method for the data classification in

supervised machine learning programming.

When we want to apply the machine learning

programming to the nuclear facilities, the historical data

classification is sometimes required to evaluate new input

data such as operator actions and field signals pressure and

temperature and so on, into one of two states such as

correct or incorrect, true or false, etc. For this, SVM can be

used.

There are two types of SVMs: linear SVM and non-

linear SVM. This paper briefly reviews linear SVM

(LSVM) only. The LSVM is called simple or hard SVM.

The non-linear SVM is called complex or soft SVM.

This paper describes theoretical background of the

LSVM and provides simple test cases to show how the

LSVM works. This paper also briefly mentions the

shortage of the LSVM and points for improving the LSVM.

2. Linear Support Vector Machine

The SVM is used to find an optimized hyperplane

which separates the given data into one of two areas (or

planes) as shown in Fig. 1.

Figure 1 Two hyperplanes separating data

In Fig. 1, the hyperplane on the right side is better than

that on the left side because its margin is larger. Since

the hyperplane is one dimension, it is called linear

support vector machine (LSVM).

In Fig. 2, the hyperplane is 𝐱 • 𝐰 + 𝑏 = 0 and we

need to find the optimal 𝐰 and 𝑏 to get a maximal m,

where x ∈ 𝑅2 . When we represent the x data in the

form of vectors, the 𝐱3 and 𝐱𝟐are called support vectors

that determine the decision boundary for the

classification. The margin m is represented in the form

of

m = (𝐱3 − 𝐱𝟐) •
𝐰

‖𝐰‖

= (𝐱3 • 𝐰 − 𝐱𝟐 • 𝐰)
1

‖𝐰‖

= (1- 𝑏 + 1 + 𝑏)
1

‖𝐰‖

=
2

‖𝐰‖
 (1)

The maximal of m is represented in the form of

Max(m) = Max (
2

‖𝐰‖
) (2.1)

 = Min (
‖𝐰‖

2
) (2.2)

 = Min (
‖w‖2

2
) (2.3)

 = Min(
𝐰•𝐰

2
) (2.4)

Although we change the maximal Eq. (2.1) to minimal

Eq. (2.2), the goal of getting the maximal of m is not

changed. We can square the Eq. (2.2) to eliminate the

square root of the L2-norm in the Eq. (2.2). Although we

square the Eq. (2.2), the goal of getting the maximal of m

is not changed. The Eq. (2.2) and Eq. (2.3) are said to be

the same problem. Finally, we get the Eq. (2.4) which is a

quadratic optimization problem.

In order to solve the Eq. (2.4) using Lagrangian, we

need to set constraints. When we set a group of data to

1 (positive plane) and the other group of data to -1

(negative plane) as shown in Fig. 2, all the data can be

represented in the form of

𝑦𝑖(x • w+b)-1 ≥ 0, (3)

where 𝑦𝑖 = 1 𝑤ℎ𝑒𝑛 x • w+b ≥ 1 and

 𝑦𝑖 = −1 𝑤ℎ𝑒𝑛 x • w+b ≤ -1

Figure 2 A hyperplane with constraints

Then Eq. (3) becomes an inequality constraint of the

Eq. (2.4) to be solved using Lagrangian. We need a

Transactions

of

the

Korean

Nuclear

Society

Virtual

spring

Meeting

May

13-14,

2021

Lagrangian multiplier λ that is equal to or greater than

zero. Thus, we can define Lagrangian

ℒ(w,b, λ) = f(w) − λg(w)

 =
𝐰•𝐰

2
 − ∑ λ𝑖 (𝑦𝑖(x•w+b)-1), (4)

where f(w)= Min (
𝐰 • 𝐰

2
)

 subject to λ𝑖 ≥ 0 and

 𝑔(w) = 𝑦
𝑖
(x•w+b)-1 ≥ 0, i=1..n

In order to solve the Eq. (4), we take partial

derivatives

𝜕ℒ

𝜕w
= w − ∑ λ𝑖 𝑦𝑖

x (5)

𝜕ℒ

𝜕λ
= 𝑦𝑖(x • w+b)-1 (6)

Thus, we can see that w is a function of λ

w= ∑ λ𝑖 𝑦𝑖x (7)

Because of the inequality constraints in the Eq. (4),

the KKT (Karush-Kuhn-Tucker) conditions are taken

into account to determine λ. Based on the characteristics

of the KKT conditions, λ as an Lagrange multiplier is

positive for a support vector that lies on the hyperplane

and is zero for a vector that lies on the positive or

negative plane.

3. Simple Test Cases

We don’t need to numerically program the Eq. (4)

because the Sckit-learn provides an SVM library as

follows:

Sklearn.svm.SVC(kernel="linear").fit(X, y)

A simple test case is shown in Table 1 to use the SVM

library.

Table 1: Test case 1

𝒙1 10 20 37 33 40 50 50 65 90 100

𝒙2 15 25 21 22 30 60 80 57 80 100

𝒚 -1 -1 -1 -1 -1 1 1 1 1 1

When we input the data in Table 1 to the SVM library,

we can obtain the output as shown in Fig. 3.

Figure 3 The result of test case 1

We can see that the SVM library classifies the given

X data well. When we move x(65, 57) as shown in Table

2 to the negative plane, we can see that the margin

shrinks as shown in Fig. 4.

Table 2: Test case 2

𝒙1 10 20 37 33 40 50 50 65 90 100

𝒙2 15 25 21 22 30 60 80 57 80 100

𝒚 -1 -1 -1 -1 -1 1 1 -1 1 1

Figure 4 The result of test case 2

When we move x(100,100) as shown in Table 3 to the

negative plane, we can see that the SVM library cannot

classify the data as shown in Fig. 5 because x(100,100)

is too far from the negative plane. This is a shortage of

the LSVM. Thus, we need a non-linear SVM to

overcome this shortage.

Table 3: Test case 3

𝒙1 10 20 37 33 40 50 50 65 90 100

𝒙2 15 25 21 22 30 60 80 57 80 100

𝒚 -1 -1 -1 -1 -1 1 1 1 1 -1

Figure 5 The result of test case 3

The machine learning programming was performed

using Spyder 3.3.6 in Anaconda 3 1.9.12, Python 3.7.4,

and Sckit-learn library.

4. Conclusions

This paper briefly reviews linear support vector

machine (LSVM) and shows how it works with simple

test cases. The LSVM is not realistic in the real world.

In order to overcome a shortage of LSVM, non-linear

SVM with complementary slackness conditions and a

kernel trick method will be studied further.

Acknowledgement

This work was supported by Korea MSIT (Grant

Code: 2020M2D5A1078133)

Transactions of the Korean Nuclear Society Virtual spring Meeting

May 13-14, 2021

REFERENCES

[1] Yong Suk Suh, et al., A Brief Review of a Machine

Learning Programming of Simple Logistic Regression,

Transactions of the Korean Nuclear Society Autumn

Meeting, Yeosu, Korea, October 25-26, 2018.

[2] Yong Suk Suh, et al., Considerations on Machine

Learning Programming of Multiple Linear Regression,

Transactions of the Korean Nuclear Society Spring

Meeting, Jeju, Korea, May 23-24, 201.

[3] Yong Suk Suh, et al., A Performance Evaluation

Method of a Machine Learning Programming of Simple

Logistic Regression, Transactions of the Korean

Nuclear Society Autumn Meeting, Goyang, Korea,

October 24-25, 2019.

[4]http://en.m.wikipedia.org/wiki/Support_vector_mac

hine

Transactions of the Korean Nuclear Society Virtual spring Meeting

May 13-14, 2021

http://en.m.wikipedia.org/wiki/

