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1. Introduction  

For the data classification in supervised machine 

learning programming, logistic regression can be used. 

Logistic regression was briefly reviewed in previous 

papers [1], [2] and [3]. Logistic regression is based on the 

logistic (i.e., sigmoid) function which is derived from the 

logit function and classifies input data into one of two 

states with a threshold that is given by the programmer. 

Logistic regression represents the data classification in the 

form of probabilistic scores between 0 and 1. When we do 

not want the probabilistic scores, support vector machine 

(SVM) can be used for the data classification [4]. Thus, 

SVM is an alternative method for the data classification in 

supervised machine learning programming. 

When we want to apply the machine learning 

programming to the nuclear facilities, the historical data 

classification is sometimes required to evaluate new input 

data such as operator actions and field signals pressure and 

temperature and so on, into one of two states such as 

correct or incorrect, true or false, etc. For this, SVM can be 

used. 

There are two types of SVMs: linear SVM and non-

linear SVM. This paper briefly reviews linear SVM 

(LSVM) only. The LSVM is called simple or hard SVM. 

The non-linear SVM is called complex or soft SVM. 

This paper describes theoretical background of the 

LSVM and provides simple test cases to show how the 

LSVM works. This paper also briefly mentions the 

shortage of the LSVM and points for improving the LSVM.  

 

2. Linear Support Vector Machine 

The SVM is used to find an optimized hyperplane 

which separates the given data into one of two areas (or 

planes) as shown in Fig. 1. 

 
Figure 1 Two hyperplanes separating data 

 

In Fig. 1, the hyperplane on the right side is better than 

that on the left side because its margin is larger. Since 

the hyperplane is one dimension, it is called linear 

support vector machine (LSVM).  

In Fig. 2, the hyperplane is 𝐱 • 𝐰 + 𝑏 = 0  and we 

need to find the optimal 𝐰 and 𝑏 to get a maximal m, 

where x ∈  𝑅2  . When we represent the x data in the 

form of vectors, the 𝐱3 and 𝐱𝟐are called support vectors 

that determine the decision boundary for the 

classification. The margin m is represented in the form 

of 
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𝐰
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The maximal of m is represented in the form of 

Max(m) = Max (
2

‖𝐰‖
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Although we change the maximal Eq. (2.1) to minimal 

Eq. (2.2), the goal of getting the maximal of m is not 

changed. We can square the Eq. (2.2) to eliminate the 

square root of the L2-norm in the Eq. (2.2). Although we 

square the Eq. (2.2), the goal of getting the maximal of m 

is not changed. The Eq. (2.2) and Eq. (2.3) are said to be 

the same problem. Finally, we get the Eq. (2.4) which is a 

quadratic optimization problem. 

In order to solve the Eq. (2.4) using Lagrangian, we 

need to set constraints. When we set a group of data to 

1 (positive plane) and the other group of data to -1 

(negative plane) as shown in Fig. 2, all the data can be 

represented in the form of 

𝑦𝑖(x • w+b)-1 ≥ 0,                                                  (3) 

where  𝑦𝑖 = 1     𝑤ℎ𝑒𝑛 x • w+b ≥ 1 and 

         𝑦𝑖 = −1  𝑤ℎ𝑒𝑛 x • w+b ≤ -1 

 

 
Figure 2 A hyperplane with constraints 

 

Then Eq. (3) becomes an inequality constraint of the 

Eq. (2.4) to be solved using Lagrangian. We need a 
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Lagrangian multiplier λ that is equal to or greater than 

zero. Thus, we can define Lagrangian 

ℒ(w,b, λ) = f(w) − λg(w)  

             =
𝐰•𝐰

2
 − ∑ λ𝑖  ( 𝑦𝑖(x•w+b)-1),             (4) 

where  f(w)= Min (
𝐰 • 𝐰

2
 ) 

                        subject to   λ𝑖  ≥ 0 and 

                                 𝑔(w) =  𝑦
𝑖
(x•w+b)-1 ≥ 0, i=1..n   

                     

In order to solve the Eq. (4), we take partial 

derivatives 

𝜕ℒ

𝜕w
= w − ∑  λ𝑖 𝑦𝑖

x                                                        (5) 

𝜕ℒ

𝜕λ
= 𝑦𝑖(x • w+b)-1                                                         (6) 

 

Thus, we can see that w is a function of λ  

w= ∑  λ𝑖 𝑦𝑖x                                                             (7) 

 

Because of the inequality constraints in the Eq. (4), 

the KKT (Karush-Kuhn-Tucker) conditions are taken 

into account to determine λ. Based on the characteristics 

of the KKT conditions, λ as an Lagrange multiplier is 

positive for a support vector that lies on the hyperplane 

and is zero for a vector that lies on the positive or 

negative plane. 

 

3. Simple Test Cases 

We don’t need to numerically program the Eq. (4) 

because the Sckit-learn provides an SVM library as 

follows: 

Sklearn.svm.SVC(kernel="linear").fit(X, y) 

 

A simple test case is shown in Table 1 to use the SVM 

library.  

 

Table 1: Test case 1 

𝒙1 10 20 37 33 40 50 50 65 90 100 

𝒙2 15 25 21 22 30 60 80 57 80 100 

𝒚  -1 -1 -1 -1 -1 1 1 1 1 1 

 

When we input the data in Table 1 to the SVM library, 

we can obtain the output as shown in Fig. 3. 

 
Figure 3 The result of test case 1 

 

We can see that the SVM library classifies the given 

X data well. When we move x(65, 57) as shown in Table 

2 to the negative plane, we can see that the margin 

shrinks as shown in Fig. 4. 

 

Table 2: Test case 2 

𝒙1 10 20 37 33 40 50 50 65 90 100 

𝒙2 15 25 21 22 30 60 80 57 80 100 

𝒚  -1 -1 -1 -1 -1 1 1 -1 1 1 

 
Figure 4 The result of test case 2 

 

When we move x(100,100) as shown in Table 3 to the 

negative plane, we can see that the SVM library cannot 

classify the data as shown in Fig. 5 because x(100,100) 

is too far from the negative plane. This is a shortage of 

the LSVM. Thus, we need a non-linear SVM to 

overcome this shortage. 

 

Table 3: Test case 3 

𝒙1 10 20 37 33 40 50 50 65 90 100 

𝒙2 15 25 21 22 30 60 80 57 80 100 

𝒚  -1 -1 -1 -1 -1 1 1 1 1 -1 

 

 
Figure 5 The result of test case 3 

 

The machine learning programming was performed 

using Spyder 3.3.6 in Anaconda 3 1.9.12, Python 3.7.4, 

and Sckit-learn library. 
 

4. Conclusions  

This paper briefly reviews linear support vector 

machine (LSVM) and shows how it works with simple 

test cases. The LSVM is not realistic in the real world. 

In order to overcome a shortage of LSVM, non-linear 

SVM with complementary slackness conditions and a 

kernel trick method will be studied further. 

 

Acknowledgement 

This work was supported by Korea MSIT (Grant 

Code: 2020M2D5A1078133) 

Transactions of the Korean Nuclear Society Virtual spring Meeting

May 13-14, 2021



  

 

 

REFERENCES  

[1] Yong Suk Suh, et al., A Brief Review of a Machine 

Learning Programming of Simple Logistic Regression, 

Transactions of the Korean Nuclear Society Autumn 

Meeting, Yeosu, Korea, October 25-26, 2018. 

[2] Yong Suk Suh, et al., Considerations on Machine 

Learning Programming of Multiple Linear Regression, 

Transactions of the Korean Nuclear Society Spring 

Meeting, Jeju, Korea, May 23-24, 201. 

[3] Yong Suk Suh, et al., A Performance Evaluation 

Method of a Machine Learning Programming of Simple 

Logistic Regression, Transactions of the Korean 

Nuclear Society Autumn Meeting, Goyang, Korea, 

October 24-25, 2019. 

[4]http://en.m.wikipedia.org/wiki/Support_vector_mac

hine 

 

 

 

 

 

Transactions of the Korean Nuclear Society Virtual spring Meeting

May 13-14, 2021

http://en.m.wikipedia.org/wiki/



