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1. Introduction

Pyroprocessing is an electrochemical recycling 

technology for used fuels. As an alternative of aqueous 

technologies with several advantages, it prevents pure 

plutonium separation, which provides proliferation 

resistance. For nuclear fuel cycle facilities, it is 

indispensable to implement a safeguards system that can 

be monitored and verified by the International Atomic 

Energy Agency (IAEA). 

Current safeguards technologies mainly rely on a mass 

balance method, which is based on sample extraction and 

the use of destructive assay. Due to unique features of 

pyroprocessing, there is uncertainty to apply traditional 

safeguards methods to meet safeguard-ability 

requirements (defined as “timely detection of significant 

quantity of special nuclear material”) in commercializing 

pyroprocessing, and new approaches and technologies 

have been suggested to enhance existing safeguards.   

It is suggested that process monitoring (PM) can 

supplement existing safeguards technologies. By 

employing PM, it is possible to indirectly track a flow of 

special nuclear materials. Various types of signals can be 

produced in (near) real time from a variety of sensors 

installed in specific locations at the facility. Though the 

signal alone do not imply information about the 

operation state, the process can be diagnosed based on 

the statistical experience by collecting data and 

developing data library. On this wise, machine learning 

The electrorefining (ER) process is a main unit process 

in pyroprocessing. The purpose of ER is to selectively 

separate uranium from used fuels. When the process 

begins, a variety of active elements including SNMs are 

dissolved out into molten salt electrolyte, and 

accumulated in the electrolyte. Only uranium is electro-

deposited on a cathode according to the order of 

equilibrium potentials among existing elements. 

Therefore, ER is very important process in the 

safeguards aspect and requires to employ a reliable 

safeguards system. 

In this study, the feasibility of using PM based on 

machine learning for improving safeguards-ability of ER 

was examined. Cathode potential was selected as a target 

signal to investigate the operation state (normal vs. off-

normal). Cathode potential data was produced through a 

series of experiments in lab-scale. Surrogate materials, 

which have close standard reduction potentials leading to 

feasible environment for codeposition, were employed in 

the experiments. In safeguards perspective, if the co-

deposition signal can be distinguished when a difference 

of reduction potential between elements is small, it is 

expected to clearly distinguish the co-deposition for 

elements having a larger difference in reduction potential 

such as uranium and plutonium. To support this 

statement, two types of binary systems were employed 

using lanthanum - cerium (La-Ce), or lanthanum - 

gadolinium (La-Gd). The composition of deposition was 

analyzed using inductively coupled plasma atomic 

emission spectroscopy (ICP-OES) to classify input data. 

Before learning, data preprocessing was conducted in 

terms of complicity and quantity to prepare appropriate 

data for learning. Both neural network (NN) and 

recurrent neural network (RNN) were used in learning.  

2. Methods

2.1 Cathode Potential 

The cathode potential is intuitive data providing a 

simple approach to detect co-deposition of Pu [1-2]. 

Cathode potential is an electric single recorded while 

metal ions are reduced to metal on a cathode. The 

cathode potential is defined as follows by the Nernst 

equation:  

E = 𝐸0` +
𝑅𝑇

𝑛𝐹
ln(𝐶ox) (1) 

where E is the electrode potential [V], E0` is the 

standard apparent reduction potential [V], R is the ideal 

gas constant [8.314 J/mol·K], T is the absolute 

temperature [K], n is the number of electrons involved in 

the oxidation-reduction reaction, F is the Faraday’s 

constant [96,485 C/mol], and Cox is the concentration 

of the reactant [mol/cm3]. 

 As shown in the equation 1, the number of electrons 

(n) and the standard apparent reduction potential (E0`) 

are properties of an element, and the ideal gas constant 

(R) and the Faraday’s constant (F) are constants. 

Therefore, the electrode potential is a function of the 

temperature (T) and the concentration of reactant (Cox). 

Theoretically, since a standard reduction potential is a 

thermodynamic property of each element differing by 

element to element, it is possible to infer whether the 

process operation is normal state (pure uranium 

deposition) or off-normal state (co-deposition) by 

examining a flow of cathode potential. During pure 

uranium deposition, the potential is maintained 

constantly. Therefore, if other active elements start to 

deposit, the potential will shift to more negative value.  

However, in actual, the electrode potential is a result 

of comprehensive and complex interactions of various 

elements in molten salt such as exchange current 

densities of elements which depend on their 

concentrations, limited current density affected by mass 



transfer of elements, and also continuing change of 

concentration and cathode surface area complicate the 

signal [3]. 

2.2 Machine Learning 

To effectively manage and utilize the massive 

amounts of data collected, the use of machine learning 

— an application of artificial intelligence (AI) — have 

dramatically increased. In machine learning, existing 

data are used to enable a computer to learn how to 

conduct a given task by means of statistical inference, 

without explicit programming. The advantages of 

machine learning are enhanced when variables are inter-

related. Therefore, it seems machine learning can be a 

good approach to maximize the benefits of PM.  

Neural network (NN) is a subcategory of machine 

learning method. NN simulates the neural cell and its 

neural network in real life. A neuron (or a node) is 

connected to the other neurons via an input/output link 

("network").  Recurrent neural network (RNN) is a type 

of NN that uses sequential data as input. RNN is an 

algorithm that is applied where previous data affects the 

current data, and it can be used for predictions such as 

time series forecasting. The RNN can be considered as a 

graph of a “circular NN cell” that performs the same 

operation on each sequential element and can solve 

various kinds of problems by rearranging the ways cell 

graphs are assembled. 

NN have been applied in nuclear safeguards since 

1990’s [4-5]. As computing techniques surged, a number 

of research have been conducted as efforts to apply 

machine learning techniques to nuclear industry such as 

safety, security, and safeguards including PM in order to 

improve robustness of a process. Among them, some 

research proposed the application of machine learning to 

enhance pyroprocessing safeguards-ability [5]. 

3. Experiment

Electrodeposition experiments were conducted in a 

binary system with various cell compositions to produce 

cathode potential data. In the experiment, both a singular 

element deposition (normal operation) and two elements 

codeposition (off-normal operation) were produced. 

Three lanthanides (Lns); La, Ce, and Gd, were used as 

surrogate materials based on their close standard 

reduction potentials each other. It allows favorable 

environment for codeposition. Due to the similar 

behavior of Lns with that of actinides (Ans), commonly, 

Lns are used as surrogate materials of Ans. Since the 

order of reduction potential is EGd > ECe > ELa, Gd or Ce 

(higher reduction potential) was used as the surrogate 

material for U, and La was used instead of Pu to simulate 

co-deposition [3]. 

The composition of electrochemical cells were 

designed the same with [3] elsewhere for more detailed 

and general descriptions. Only a brief explanation of 

experiment cells design were provided here.  

According to Nernst equation, the difference in 

equilibrium potentials is able to adjust by using the mole 

ratio of the cell components. Electrode potential 

differences were varied from 0.00 and 0.10 V for the Ce-

La binary system and between 0.05 and 0.15 V for the 

Gd-La binary system. Each binary system used three 

experimental cells with 0.05 V interval. The 

experimental cells were named based on the Ce or Gd in 

the binary system and as their potential difference 

increase, the allocated number increase from 1 to 3. 

Considering that the electrolyte in an actual 

electrorefiner begins with approximately 10 wt% UCl3, 

the experimental cells were also designed to contain 

approximately 10 wt% GdCl3-LaCl3 or CeCl3-LaCl3. An 

electrodeposition experiment was also conducted for a 

cell containing 10 wt% LaCl3 to obtain pure singular 

deposition signal. The designed electrochemical cells are 

presented in Table I.   

Table I. The composition of the experimental cells in the mass 

transfer study 

∆E 

[V] 

CeCl3-LaCl3 

Binary System 

GdCl3-LaCl3 

Binary System 

Cell 

Name 
XCe/XLa 

Cell 

Name 
XGd/XLa 

0.00 Ce1 0.1 - - 

0.05 Ce2 1 Gd1 0.25 

0.10 Ce3 10 Gd2 2.5 

0.15 - - Gd3 25 

The electrodeposition experiments were conducted as 

following conditions. Experiments were performed in a 

glove box under an inert atmosphere with less than 1 ppm 

of both oxygen and moisture. The operating temperature 

maintains as 773 K (±3 K) measured with a chromel-

alumel thermocouple.  

Three-electrode system was employed for experiments 

using a working electrode, a counter electrode, and a 

reference electrode. The working electrode was a 

molybdenum wire with a 1 mm diameter. The immersed 

length of the working electrode was 2 (± 0.2) cm. The 

counter electrode was an Ln metal (Ln = La, Ce, or Gd, 

rod located in a stainless steel basket. Electrodes were 

sheathed in alumina tubes to prevent electrical 

conduction between materials. A Ag/AgCl reference 

electrode was prepared using 1 wt% AgCl in a LiCl-KCl 

eutectic salt with a silver wire (0.5 mm diameter) 

contained in a thin mullite tube (4 mm inner diameter , 6 

mm outer diameter). To prepare an electrolyte consisting 

of 59-41 mol% LiCl-KCl eutectic salt, LiCl and KCl  

were mixed in an alumina crucible and the mixture was 

pre-heated at 773 K for more than 3 hours to remove any 

moisture. After the cell was cooled down, it was re-

heated with an addition of LnCl3 to adjust the final 

molten salt concentrations in the cell. All reagents were 

purchased in Alfa Aesar with ACS grade/purity. A 

schematic of the electrochemical cell is shown in Fig. 1. 
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Fig. 1. Electrochemical cell design for the experiment 

Cathode potential was recorded for 600 seconds with 

100 hertz scale by supplying a constant electric current. 

To diversify the deposition ratio, the supplied current 

was varied from 100 to 500 mA in 50 mA intervals. Each 

experiment was repeated at least 3 times. Cathode 

sheathing alumina was designed to have a basket so that 

it can capture any fallen deposits to prevent loss in an 

electrodeposit sample as shown in Fig. 1. The 

electrodeposit experiments used a 

potentiostat/galvanostat (Biologic, SP-150) with EC-lab 

software. 

After each experiment, the electrodeposits and the 

eutectic salts were sampled and analyzed for their 

quantities and associated compositions using ICP-OES 

(Agilent, Agilent ICP-OES 5110). The electrodeposit 

samples were prepared by cutting the bottom of the Mo 

electrode including deposition. The segment was 

weighed and then dissolved in 20 ml of 10 % HNO3. 

Since 10% HNO3 cannot dissolve Mo metal, the Mo was 

collected from the acid solution and weighed in order to 

subtract its weight from the initial sample weight. The 

salt sample was weighed and then dissolved in 20 ml of 

2% HNO3. Further dilution was conducted to ensure the 

sample concentration was between 0.1 to 10 ppm. The 

final acidity of ICP-OES samples was maintained at 2% 

HNO3. The salt analysis results were used to remove 

effect of attached salt in codeposition ratio. The amount 

of attached salt was calculated based on the measured 

potassium amount and the Ln amount resulted from not 

deposition but salt were proportionately subtracted. 

4. Experiment Results and Data Preparation

4.1 Experimental results 

A range of codeposition ratio in each experimental cells 

are presented in Table II. The co-deposits had weak 

attachment with Mo electrode, resulting in a loss of 

electrodeposit samples. This phenomenon was more 

serious in Gd-La binary cell than Ce-La binary cell. The 

ranges of codeposition ratio were the result of ICP-OES 

data not the result of discrete experiment. To indicate the 

data number difference, the number of actually analyzed 

samples by ICP-OES were presented in parentheses. 

As expected, when an electrode potential difference is 

small, two elements deposited together easily. Ce 1 cell 

where the electrode potential difference is zero, La, 

which has a more negative electrode potential than Ce, 

deposited more than Ce. 

Table II. The results of electrodeposition experiment 

Normal 

deposition 

The 

number 

of data 

Off-normal 

deposition 

The 

number 

of   data 

La 0% 27 (27) Gd 2 10~25 % 27 (14) 

Gd 3 ~1 % 28 (16) Ce 2 40~60% 29 (8) 

Ce 3 2~5% 27 (5) Gd 1 100~300 % 32 (24) 

Ce 1 300~1200% 30 (18) 

*parentheses: the number of actually analyzed samples by ICP-OES

4.2 Data preparation for learning 

The obtained data was labeled as normal (singular 

deposition) or off-normal (codeposition). To balance the 

number of normal and off-normal data, when 

codeposition ratio is less than 5%, the data is classified 

as normal data as Table II presented.  

The advantages of machine learning can be 

maximized when appropriate data is available in terms of 

complicity and quantity. About 200 cathode potentials 

were collected for data. Although one cathode potential 

data consists of 60,000 points (100 hertz for 600 seconds), 

since it is 1-dimensional (1 column) time-series data, the 

simplicity of the data was not suitable for machine to find 

features in data. To overcome a lack of data (complicity 

and quantity), the data is preprocessed before use for 

learning. 

The complicity was compensated by employing 

another data, a change of cathodic surface area. One 

factor influencing electrodeposition is current density. 

When a constant current is applied, the cathodic current 

density gradually increases due to the cathode growth, 

which can be estimated by Cottrell equation [3]. By 

predicting the effect of surface area growth (adding the 

second column), other unknown features may be easily 

found.  

The quantity was augmented by slicing the 10 minutes 

data as 1 minute data (6,000 data points). However, 

initial section (until 5999th point) wasn’t used to 

eliminate an unsteady state in the initial stage. This is a 

common feature in the cathode potential. As all of the 

reactants surrounding the electrode are consumed by the 

instantaneous reaction (electrodeposition), rapid 

potential drop occurs. The electrode potential is 

recovered as the concentration gradient becomes similar 

over time through diffusion and as cathodic surface area 

grows.  

These two preprocessing methods are reasonable 

considering the characteristic of the data and necessary 

to make learning feasible.  
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5. Result and Discussion

Both NN and RNN were applied to classify the data as 

normal and off-normal. Softmax function is used as a 

classifier and Cross entropy error is used as loss function. 

To optimize the learning, various factors such as the 

number of layers and nodes, learning batch size, epoch, 

learning rate are differed. Several optimizers were also 

tried and optimizer Adam and AMSGrad showed 

meaningful results.  

Fig. 2 presents the learning results of using two-layer 

RNN with optimizer AMSGrad, which showed the best 

learning result. Since the cathode potential is not high 

dimension data, deeper structure (increasing the number 

of layers) hindered learning and resulted in decrease of 

accuracy. The classification accuracy reached about 80%. 

However, as fig. 2 showed, variance between train and 

validation for both loss and accuracy were maintained 

and not stabilized. This is because the model cannot find 

optimized parameters.  

Fig. 2. Result of learning using two-layer RNN (32 hidden 

states, optimizer: AMSGrad, batch size: 16, learning rate: 

0.0001) 

As mentioned before, the electrode potential is a result 

of comprehensive and complex interactions of various 

factors related with electrolyte and electrode. In this 

study, the limited number of experiments and simplicity 

of data (two column data: cathode potential and 

estimated cathodic surface area) disrupted to maximize 

the benefits of machine learning. However, in actual field, 

there will be more available data such as temperature and 

concentration-related indicators.  Availability of various 

data is achievable by designing facility considering such 

approach in advance which known as safeguards by 

design. 

As more signals become available, the reliability of 

PM using ML approach can increase. Complexity of data 

allows profound ML techniques such as deep learning, 

and reducing the possibility of spoofing signals.   

6. Conclusion and Future work

In this study, feasibility of ML based PM was 

examined to employ it as an approach for enhancing 

pyroprocessing safeguards-ability. Cathode potential 

recorded during electrodeposition in electrorefining 

process was suggested as a test case.  

Cathode potentials were obtained experimentally and 

the obtained data was labeled as normal and off-normal 

data based on the results of ICP-OES analyses. Data 

preprocessing was conducted to overcome a lack of data 

and its simplicity. NN and RNN were employed in 

machine learning. To optimized the learning, various 

variables were tested. As a results, two-layer RNN with 

optimizer AMSGrad showed the best result, presenting 

more than 80% of classification accuracy.  

To advance current result, further research is planned. 

Firstly, the assumption – clearer distinguishment of 

codeposition for elements having a larger difference in 

reduction potential – will be tested by dividing the 

validation dataset. Secondly, considering special 

characteristics of safeguards, which discourages the 

necessary of off-normal operation to acquire off-normal 

data, a classification model using only normal data 

(machine learning without negative data) will be 

developed.  

If safeguards-ability can be improved with this 

method, this method would be applied not only to 

electrorefining, but also to overall facility including other 

unit processes. 
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