Evaluation for Accident Mitigation Effect of External Injection at WH600 using MELCOR

Transactions of the Korean Nuclear Society Autumn Meeting

December 16 - 18, 2020

Hanyang University (HYU) 원자력안전해석연구실 박예림

1. Introduction

1. Introduction

- 2011년 후쿠시마 사고로 인해, 설계기준초과외부사건 대비의 필요성 인지
- 미국에서 FLEX 전략을 도입, 국내에서도 MACST(Multi-barrier accident coping strategy) 도입
 - 극한재해가 중대사고로 발전하는 것을 원천에 방지하기 위함
- MACST 전용 설비 및 체계 구축, MOG(MACST Operating Guideline) 개발
 - MACST 전용 설비의 사고완화 효과에 대한 분석이 필요함
- → 본 연구에서는 MACST 설비 중 이동형 저압 펌프를 이용한 1, 2차 측으로의 외부주입에 따른 사고진행과 완화 효과를 분석

단계	설비	수량	단계	설비	수량
	5.5kW 휴대용 소형 발전기	호기별 2대	오다니게	3.2MW 대용량 이동형 발전차	본부별 1대
1단계	350kW 중형 선배치 발전기	호기별 1대	3번계	이동형 정수 차량	전사 1대
	다목적 통신중계 차량	본부별 2대	최종열제거	이동형 다목적 고유량 펌프	호기별 1대
	비상조명 기기	호기별 1Set	원상실	이동형 열교환기	본부별 2대
	이동형 공기압축기	호기별 1대/본부별 1대	인위적재해	이동형 고압 살수차	본부별 2대
	이동형 고압 펌프	호기별 1대	공통	견인 차량	본부별 2대
2단계	이동형 팬 및 덕트	호기별 1세트		1 0MW 대용량 이동형 박저차	호기볔 1대
	연료유 이송/저장 설비	본부별 2대	기 확보	이동형 저압 펌프	호기별 2대

Table. 1. MACST 전용 설비 ¹⁾

1) 양승태, 사고관리계획서 사업자 후속조치 현황, 2019년 KNS 추계학술대회 워크숍, 2019

2. Methodology

2.1 Plant Nodalization

Fig. 1. WH600 MELCOR 모델의 원자로냉각재계통 Nodalization

- MELCOR 2.2를 이용한 사고 분석
- 참조 노형: WH600, 2개의 루프(A, B)로 구성
- B 루프의 저온관과 증기발생기로 이동형 기기 연결 가정
 - 이동형 저압 펌프 (500gpm @20kg/cm²) 가정¹⁾
- 1차측 PORV, 2차측 SG PRV가 운전원에 의해 수동으로 개방

1) 양승태, 사고관리계획서 사업자 후속조치 현황, 2019년 KNS 추계학술대회 워크숍, 2019

2.1 Plant Nodalization

- 15층(Axial Level), 5개의 반경(Ring)으로 구성
- 유효노심(Active Core)은 5 14층으로 구성
- 원자로용기 하부(Lower Plenum)은 1 3층으로 구성
- 노심 지지 구조물(Supporting Structure)은 1 4 층에 모의
 - 1, 2, 4층에 Plate로, 3층에 Column

2.2 Accident Scenario

- 사고 경위: Loss of CCW 초기사건 가정
 - Turbine Driven 보조급수펌프 이용 불가 가정
 - 이동형 저압 펌프는 사고발생 1.5 시간 후 연결
 - SAMG 진입 조건 30분 후, 운전원에 의해 수동으로 밸브 개방
- Base : 이동형 기기 사용되지 않음
- Case 1: 1차측 감압으로, 1차측 외부 주입 수행
- Case 2: 1,2차측 감압으로, 1,2차측 외부 주입 수행

	Base	Case 1	Case 2
Manually Opened Valve	-	2 PORVs	2 PORVs 1 PRV
External Injection Location	-	Cold Leg B	Cold Leg B Steam Generator B

Table. 2. 사고 경위 구분

3. Results

✤ Base 사고 진행과정

Table. 3. A	ccident progr	ession of	Base
-------------	---------------	-----------	------

Event	Base		
Event	[sec]	[hr]	
LOCCW	0.0	0.0	
PORV First Open	4312	1.20	
Active Core Uncover	6800	1.89	
SAMG Entry Condition	7846	2.18	
Core Damage	8700	2.42	
Debris Relocated to SS	9725	2.70	
RPV Failure	11149	3.10	
ACC Injection Start	11200	3.11	
ACC Injection End	11226	3.12	

- LOCCW 발생으로, 원자로/RCP 정지
- PORV set point 도달 후 개폐를 반복 (1.20 시간)
- 원자로건물로 냉각재가 빠져나가면서 유효노심 노출
- 노심 출구 열전대 SAMG 진입 조건 도달 (2.18 시간)
- 노심용융물에 의해 원자로용기 하부 가열, 파손 (3.10 시간)
- 원자로용기 파손 후, ACC로부터 냉각재 주입 (3.11 시간)

✤ Base 노심 손상 과정

Table. 3.	Accident	progression	of base

Event	Base		
Event	[sec]	[hr]	
LOCCW	0.0	0.0	
PORV First Open	4312	1.20	
Active Core Uncover	6800	1.89	
SAMG Entry Condition	7846	2.18	
Core Damage	8700	2.42	
Debris Relocated to SS	9725	2.70	
RPV Failure	11149	3.10	
ACC Injection Start	11200	3.11	
ACC Injection End	11226	3.12	

- 상단의 노심부터 손상되기 시작 (2.42 시간)
- 약 200 kg UO2가 4층 SS에 재배치 (2.70 시간)
 - → SS 손상 → 동일 반경 FU 손상
 - * FU: Intact fuel component
 - * SS: Supporting structure

5

- Case 1, Case 2에서 PORV 2개 개방으로 인해 1차측 압력 급감 (2.68 시간)
- Case 2에서 2차측으로 열 제거가 지속적으로 이루어짐 → Case 1 보다 더 빠르게 1차측 감압
- Case 2 는 충분히 감압 되어 저압 이동형 펌프로 부터 꾸준히 냉각수 주입, Case 1은 순간적으로만 주입

- Case 2 에서 PRV 의 수동 개방으로 인해 2차측 압력 급감
- 이동형 저압 펌프로 부터 Case 2의 증기발생기 2차측으로 냉각수가 주입

→ Case 2, 2차측으로 열제거

12

÷ ک	나고	진	행고	과정
-----	----	---	----	----

Table. 4. Accident progression of cases [hr]					
Event Base Case 1 Case 2					
Manually Valves Open	-	2.68	2.68		
External Injection to SG	-	-	2.70		
Debris Relocated to SS	2.70	2.70	2.70		
ACC Injection Start	3.11	2.90	2.80		
External Injection to RCS	-	2.91	3.10		
RPV Failure	3.10	3.93	-		

- Case 1에서는, 순간적인 외부주입과 ACC로 인해 유효노심 상단까지 일시적으로 수위 회복
- Case 2에서는, 외부주입과 ACC로 인해 유효노심 최상단까지 지속적으로 수위 유지

✤ 노심 손상 과정

Table. 4. Accident progression of cases [hr]					
Event	Base	Case 1	Case 2		
Manually Valves Open	-	2.68	2.68		
External Injection to SG	-	-	2.70		
Debris Relocated to SS	2.70	2.70	2.70		
ACC Injection Start	3.11	2.90	2.80		
External Injection to RCS	-	2.91	3.10		
RPV Failure	3.10	3.93	-		

- Base, Case 1, Case 2 최상단의 FU 부터 손상 시작 (2.42 시간) → 손상된 노심 구조물이 4층의 SS로 재배치
- Base, Case 1에서는 4층 SS 손상으로 인해 동일 반경의 FU 완전히 손상
- Case 2 에서는 ACC로 인해 4층의 SS 건전성 유지 (2.80 시간)
 → 밑에 층으로 손상된 노심구조물이 재배치 되지 않음

✤ 노심 손상 과정

Table. 4. Accident progression of cases [hr]					
Event	Base	Case 1	Case 2		
Manually Valves Open	-	2.68	2.68		
External Injection to SG	-	-	2.70		
Debris Relocated to SS	2.70	2.70	2.70		
ACC Injection Start	3.11	2.90	2.80		
External Injection to RCS	-	2.91	3.10		
RPV Failure	3.10	3.93	-		

- Base, Case 1에서는 원자로용기 하부(1 3층)로 노심용융물이 재배치
- Base에서 2층의 SS 손상 (3.00 시간), 이후 원자로용기 손상 (3.10 시간)
- Case 1에서는 ACC로 인해 2층의 SS 손상 시점이 약 0.46시간 (약 30분) 지연됨
 → 원자로용기 파손 시점은 0.83 시간 (약 50분) 지연

4. Conclusion

4. Conclusion

- 본 연구에서는 이동형 저압 펌프를 이용한 외부주입의 사고완화 효과를 평가하였음
 WH600 노형
 - LOCCW, AFW-TDP 실패 사고경위 가정
- 외부로부터 냉각수 주입이 없을 경우, 초기사건 발생 3.10 시간 후에 원자로용기가 파손됨
- 1차측으로 외부주입이 될 경우, 원자로용기 손상을 0.83 시간(약 50분) 지연시킬 수 있음
- 원자로용기의 건전성을 확보하려면, 1차측 외부주입과 동시에 2차측으로도 외부주입이 이 루어 져야함
- 일반적인 MACST 설비의 이용 단계가 아닌, 사고초반부터 이동형기기만을 사용하는 매우 보수적인 사고 경위에 대한 분석 결과임
- 사고 해석 모델에 대해, 추가적인 불확실성 분석이 이루어 진다면 신뢰성 높은 해석 결과를 얻을 것이라 기대됨

Q&A yerim@hanyang.ac.kr