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Research Objective2

Goal 1 : LES-based Oxide layer Database (DB)

Goal 2 : DL-based Advanced RANS model for Oxide layer (RANS+)

High-Fidelity Numerical Analysis of Highly Turbulent Corium Pool 

for In-Vessel Retention (IVR) Strategy Feasibility Assessment

Goal 3 : RANS+-based Oxide layer correlation (AIR+) 

and Evaluation of IVR SAMG



Purpose3

[1] Cheesewright, R.., King, K.J., Ziai, S., 1986. Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity flows. ASME 
Meeting, HTD, vol 60, pp. 75-81

• To implement the algebraic flux model in the CFD solver
• To validate it against experimental data[1]

Working Fluid Air

Rayleigh Number ~ 1010

Brief Results from the experiment

A. Asymmetrical flows 

B. re-laminarization on the floor wall

C. Transition to Turbulence location: 20% 

General flow observations in the exp. 
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• TMF (𝒖𝒊𝒖𝒋) & THF (𝜽𝒖𝒋) model

• TMF model: EVM (k-omega SST)
• THF model: EDM (AFM: Algebraic heat flux model) [1]
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In this study: SST-AFM 
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[1] K. Hanjalić, “One-point closure models for buoyancy-driven turbulent flows,” Annu. Rev. fluid Mech., 2002.
[2] Kenjeres, S. and K. Hanjalić. Contribution to elliptic relaxation modeling of turbulent natural and mixed convection, IJHFF, 26, pp.569-586
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DHC Air

Ra 5.2 x 1010

Gr 7.4 x 1010

Thot / Tcold (dT) 341.15K/295.35K (45.8K)

ν 1.73 x 10-5

β 3.15 x 10-3

Pr 0.7

BC

No slip condition: 0iU 

Reynolds stress: 0i ju u 

Dissipation:
22w k y 

Turbulent heat flux: 0iu 
2 0 Temperature variation:

• In this study
Nodes: 160x160

• P-V coupling: SIMPLE (Steady)

• Gradient, Laplacian and TMF/THF terms - CD (2nd); Rest terms - Upwind (1st)



Analysis I:6

Sharp edged peaks

Other models are more deviated 

Velocity » Temperature 



Analysis I:7 Turbulent KE » Shear Stress 

AFM is underpredicted due to fast dissipation 
of turbulence eddies that leads to lower 

turbulent intensity (Peng et al., 1998)



Analysis I:8 Turbulent Heat Fluxes

Sharp edged peaks

• Among all the models, AFM has the highest peak 

• Gives hollow-like minima before reaching the midwidth[1] 

[1] Kenjeres, S. Numerical modeling of complex buoyancy-driven flows, Ph.D. These, Delft University of Technology, (1998).



Analysis II:9

where

Model Ct0 Ct1 Ct2 Ct3 Ct4
Applicability

AFM-2005 0.15 0.6 0.6 0.6 1.5 Unity Prandtl fluids

AFM-NRG[1] 0.2 0.053 ln(Re.Pr) -0.27 0.6 2.5 0 All flow regimes but with  

limited Ra range

AFM-NRG+[1] 0.2 0.25 0.6 See Eq. below 0 High Ra cases

a1 -4.5 x 10-9

a2 2.5

n 7

Based on the Re, Pr, and the limiting condition of natural convection (i.e. Re.Pr ≤ 180), Ct1 = 0.005

Based on the Ra and Pr condition, Ct3 = 2.5

[1] Shams, A. (2018). Towards the accurate numerical prediction of thermal hydraulic phenomena in corium pools. Annals of Nuclear Energy 117 (2018) 234-246

Sensitivity of Ct1 & Ct3 (Shams et al., 2014 & Shams, 2018)
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2 + 𝐶𝑡4𝑎𝑖𝑗𝜃𝑢𝑗

𝐶𝑡3 = 𝑎1 ∙ 𝑙𝑜𝑔𝑛 𝑅𝑎 ∙ 𝑃𝑟 + 𝑎1 with 100<𝑅𝑎 ∙ 𝑃𝑟<1017



Analysis II:10

Coefficients adopted from Shams (2018)



Analysis III:11

A. Sensitivity of Ct1 & Ct3              B. Forced versus Mixed/Natural 

 This follow-up study will incorporate wide range of values:

Ct1 from (0.005 to 0.60) with Ct3 being fixed at 2.5

Ct3 from (0.60 to 2.5) with Ct1 being fixed at 0.25

Ct0 & Ct1 being sensitive to forced convection

Ct2 & Ct3 being sensitive to mixed/natural convection

Ct0 Ct1 Ct2 Ct3

Air

Optimum 0.2 1.0 0.6 1.5

Case 1 0.1 0.2 0.6 1.5

Case 2 0.1 0.6 0.6 1.5

Case 3 0.3 1.0 0.6 1.5

Case 4 0.2 1.0 0.4 0

Case 5 0.2 1.0 0.8 2.5



Analysis III:12

Sensitivity effect of Ct1



Analysis III:13

Sensitivity effect of Ct3



Analysis III:14

Effect of Ct0 and Ct1 (Forced Convection Emphasis)



Analysis III:15

Effect of Ct2 and Ct3 (Mixed/Natural Convection Emphasis)



Conclusion16

Validation of selected model (SST-AFM) for air (Pr=0.7) case
-Due to mesh grid dependence issues & RANS turbulence model selected, 
convergence is hardly achievable
-Coefficient Tuning has yet to be properly assessed once done with Large Eddy 
Simulation (LES)

Num. experiment data
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Impact of corium behavior on the evaluation


