Korean Nuclear Society – Autumn Meeting

High-Fidelity Numerical Analysis of Highly Turbulent Corium Pool for In-Vessel Retention Strategy Feasibility Assessment

Numerical Analysis of Algebraic Flux Model Using OpenFOAM CFD

Ralph Evidente

Division of Advanced Nuclear Engineering Pohang University of Science and Technology

2020 12 17

3 Purpose

- To implement the algebraic flux model in the CFD solver
- To validate it against experimental data^[1]

Working Fluid	Air			
Rayleigh Number	~ 10 ¹⁰			
Brief Results from the experiment				
A. Asymmetrical flows				
B , re-laminarization on	the floor wall			

C. Transition to Turbulence location: 20%

General flow observations in the exp.

4 Numerical Methodology (1/2)

Governing equations

$$\frac{\partial U_i}{\partial x_i} = 0$$

$$\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left[v \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) - \overline{u_i u_j} \right] + \beta (T - T_o) g_i$$

$$\frac{\partial T}{\partial t} + U_j \frac{\partial T}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\alpha \frac{\partial T}{\partial j} - \overline{\theta u_j} \right)$$

- TMF $(\overline{u_i u_j})$ & THF $(\overline{\theta u_j})$ model
 - TMF model: EVM (<u>k-omega SST</u>)
 - THF model: EDM (<u>AFM</u>: Algebraic heat flux model) ^[1]

$$\frac{\partial \overline{\partial u_i}}{\partial t} + U_k \frac{\partial \overline{\partial u_i}}{\partial x_k} = P_{\theta i}^T + P_{\theta i}^U + G_{\theta i} + \phi_{\theta i}^* - \varepsilon_{\theta i} + D_{\theta i}^{\alpha} + D_{\theta i}^t$$

$$\overline{\theta u_i} = -C_0 \frac{k}{\varepsilon} \left(C_1 \overline{u_i u_j} \frac{\partial T}{\partial x_j} + C_2 \overline{\theta u_j} \frac{\partial U_i}{\partial x_j} + C_3 \beta g_i \overline{\theta^2} \right)$$

$$\overline{Air^{(2)}} \quad 0.15 \quad 0.6 \quad 0.6 \quad 1.5$$

$$\frac{\partial \overline{\theta^2}}{\partial t} + U_J \frac{\partial \overline{\theta^2}}{\partial x_j} = -2 \ \overline{\theta u_j} \frac{\partial T}{\partial x_j} - 2\varepsilon_\theta + \frac{\partial}{\partial x_j} \left[\left(v + \frac{v_t}{\sigma_{\theta 2}} \frac{\partial \overline{\theta^2}}{\partial x_j} \right) \right]$$

$$\varepsilon_\theta = \frac{\varepsilon \overline{\theta^2}}{2Rk} \quad R = \frac{\tau_{th}}{\tau_m} \approx 0.5$$

 $\overline{u_i u_j} = v_T \frac{\partial U_i}{\partial x_j} + \frac{2}{3} k \delta_{ij}$

 $\overline{\theta u_i} = -\frac{v_T}{Pr_T} \frac{\partial T}{\partial x_i} = -\alpha_T \frac{\partial T}{\partial x_i}$

In this study: SST-AFM

5 Numerical Methodology (2/2)

- P-V coupling: SIMPLE (Steady)
- Gradient, Laplacian and TMF/THF terms CD (2nd); Rest terms Upwind (1st)

Velocity » **Temperature**

Other models are more deviated

AFM is underpredicted due to fast dissipation * of turbulence eddies that leads to lower turbulent intensity (Peng et al., 1998)

7 Analysis I:

Turbulent KE » Shear Stress

Turbulent Heat Fluxes

- Gives hollow-like minima before reaching the midwidth^[1]
- Among all the models, AFM has the highest peak

Sensitivity of Ct1 & Ct3 (Shams et al., 2014 & Shams, 2018)

$$\overline{\theta u_i} = -C_{t_0} \frac{k}{\varepsilon} \left(C_{t_1} \overline{u_i u_j} \frac{\partial T}{\partial x_j} + C_{t_2} \overline{\theta u_j} \frac{\partial U_i}{\partial x_j} + C_{t_3} \beta g_i \overline{\theta^2} \right) + C_{t_4} a_{ij} \overline{\theta u_j}$$

Model	C _{t0}	C _{t1}	C _{t2}	C _{t3}	C _{t4}	Applicability
AFM-2005	0.15	0.6	0.6	0.6	1.5	Unity Prandtl fluids
AFM-NRG ^[1]	0.2	0.053 In(Re.Pr) -0.27	0.6	2.5	0	All flow regimes but with limited Ba range
AFM-NRG+ ^[1]	0.2	0.25	0.6	See Eq. below	0	High Ra cases

$C_{t_3} = a_1 \cdot log_n$	$(Ra \cdot Pr) + a_1$	with $10^0 < Ra \cdot Pr < 10^{17}$
where	8 ₁ 8 ₂	−4.5 x 10 ⁻⁹ 2.5

n

Based on the Re, Pr, and the limiting condition of natural convection (i.e. Re.Pr \leq 180), C_{t1} = 0.005 Based on the Ra and Pr condition, C_{t3} = 2.5

7

Coefficients adopted from Shams (2018)

A. Sensitivity of Ct1 & Ct3

B. Forced versus Mixed/Natural

- This follow-up study will incorporate wide range of values: C_{t1} from (0.005 to 0.60) with C_{t3} being fixed at 2.5 C_{t3} from (0.60 to 2.5) with C_{t1} being fixed at 0.25 Ct0 & Ct1 being sensitive to forced convection Ct2 & Ct3 being sensitive to mixed/natural convection

		C _{t0}	C _{t1}	C _{t2}	C _{t3}
Air	Optimum	0.2	1.0	0.6	1.5
	Case 1	0.1	0.2	0.6	1.5
	Case 2	0.1	0.6	0.6	1.5
	Case 3	0.3	1.0	0.6	1.5
	Case 4	0.2	1.0	0.4	0
	Case 5	0.2	1.0	0.8	2.5

Sensitivity effect of Ct1

Sensitivity effect of Ct3

Effect of CtO and Ct1 (Forced Convection Emphasis)

Effect of Ct2 and Ct3 (Mixed/Natural Convection Emphasis)

Validation of selected model (SST-AFM) for air (Pr=0.7) case

-Due to mesh grid dependence issues & RANS turbulence model selected, convergence is hardly achievable -Coefficient Tuning has yet to be properly assessed once done with Large Eddy Simulation (LES)

