

Transactions of the Korean Nuclear Society Autumn Meeting

Online Conference, December 17-18, 2020

Optimization of the GPU-Based Depletion Solver in nTRACER

Han Gyu Lee and Han Gyu Joo

Seoul National University December 18, 2020

Contents

Introduction	3
Brief Descriptions about Depletion Solver	6
 Optimization of Matrix Exponential Solver Non-Zero Element Major Storage Separating Diagonal and Off-Diagonal Elements Gauss-Seidel Iterative Solver 	9 10 11 12
 Overhead Optimization Implicit Transposition during Setup Fast Non-zero Index Search Explicit copy with CUDA API 	13 14 15 16
 Performance Analysis Problem Description Enhancements of Matrix Exponential Solver Reduction of the Overheads Overall Performance of GPU Depletion Solver 	17 18 20 20 22
Conclusion	

Status of the Initial Version of GPU Solvers in nTRACER

GPU Acceleration of nTRACER

- GPU acceleration had been applied to the major parts.
 - Method of characteristics
 - CMFD calculation
 - Axial solver
- The time for HZP problem decreased by a factor of 10.
 - High speedup rate at MOC calculation
- Degradation at Depletion Problem Calculation
 - The figure below shows time shares during 2D core depletion.
 - The time shares of the others were much higher.
 - Cross section treatments
 - Subgroup
 - This slowdown is because of increased number of nuclides and CPU dependence of the other modules.
 - About 50% of the time was taken by cross section treatment.
 - Thus, further exploitation of GPUs should have been applied.

Topology of GPU Acceleration Modules in nTRACER

- nTRACER assigns a plane to one GPU card.
- Therefore, one node with multiple GPUs should treat many planes to fully exploit the GPUs.
 - In general, heterogeneous systems have similar structure.
- In the meanwhile, the available CPU resources per plane are restricted for those cases.
- This induces low scalability of 3D problems compared to 2D problems.

Exploitation of GPU to Lessen CPU Dependency

- The major reason of poor scalability is high CPU dependency.
 - Cross section treatments were all processed by CPUs.
- If fully utilizing GPUs for whole procedures, the performance at 2D problems can hold for 3D problems.
- Thus, GPU acceleration should be extensively applied to the other parts.
 - Depletion calculation
 - Cross section treatments
 - Minor processes contained by major procedures

Extensive Application of GPUs

- The right figure illustrates performance for depletion problem with varying GPU usage.
 - Initial : GPU modules only for major parts and depletion calculation
 - Extended : GPU modules for whole burdensome procedures including cross section
 - CPU ONLY : No use of GPUs
 - 20 and 5 indicates the number of CPU threads.
- The time of initial case was fine with 20 cores.
- However, it became poor with fewer threads implying poor scalability.
 - Even the MOC time increased.
- The extended cases show less difference while achieving better performance.
 - Good scalability is promised.
 - Better performance of GPUs lessen the cross section time.
- Inferiority of Depletion Solver
 - In spite of GPU porting of depletion calculation, it was slower than the CPU version.
 - 2 or 5 minutes slower
 - The performance improvements is the aim of works in this paper.

Brief Descriptions about Depletion Solver

- Sparsity of Burnup Matrices
- GPU Acceleration of Depletion Solver

Properties of Burnup Matrices in nTRACER

- Construction of a burnup matrix is done with the fixed depletion chains.
 - Given by the nTRACER depletion library
 - For all regions, the same chains are used.
- Due to the high sparsity, the matrices are stored with a sparse matrix format.
 - Compressed Sparse Row (CSR)
 - Consists of a non-zero value vector, row pointer and column index vectors
- Thus, besides non-zero vectors, the two mapping arrays are identical for whole domains.

Depletion System Batching

- Temporal separation of tasks can be advantageous with the respect of parallel efficiency.
 - Due to the locality of data
- The task separation requires a batch of systems of many regions.
 - After construction of systems for domains of interest, matrix exponential problem is solved.
- Instead of an array of structures, the batch can be stored on a two-dimensional array.
 - Thanks to the same number of non-zero elements of matrices
- The only data should be stored are non-zero elements, not index information.

A(1,reg1)	 A(nz,reg1)
A(1,reg2)	 A(nz,reg2)
A(1,reg3)	 A(nz,reg3)
A(1,regM)	 A(nz,regM)

Outline of the Initial GPU Depletion Solver

- In the solver, each thread takes one region at a time.
 - Region-wise parallelism
- It is based on Chebyshev rational approximate method (CRAM) with iterative solution.
 - The red circled term is solved with iterative method.
 - BiCGSTAB is applied for the iterative solver.

Sparsity Pattern Data on Constant Memory

- It was pointed out that whole regions can share the same index arrays.
- Those sparsity data can be transferred swiftly through use of constant memory.
 - Constant memory is the special type of read-only memory that has fast access speed.
- Despite small size of constant memory, the sparsity pattern data are small enough to be stored on it.

Optimization of Matrix Exponential Solver

- Non-Zero Element Major (NZEM) Storage
- Separating Diagonal and Off-Diagonal Elements
- Gauss-Seidel Iterative Solver

Conventional Storage of Depletion Systems

- The matrix of each region is completely independent on the other regions.
- This feature makes most of the solvers form the matrix arrays in region major (RM) order.
 - The elements in a matrix are listed, which are followed by those of another matrix.
 - RM storage is a good option considering large size of L2 or L3 cache with a few or tens of CPU cores.

Advantage of NZEM Storage with GPU Architecture

- Below two figures show the access pattern to system elements on global memory.
- Under region-wise parallelism, thousands of threads access matrices at different regions.
- With RM storage, elements having the same non-zero index are remotely located.
- In the meanwhile, the NZEM storage enables coalesced memory access.

Need of Complex Number Variables

- The formula in CRAM contains complex numbers.
- The size of matrices may be doubled due to the complex type variables.
- Not only for occupancy, the communication time increases as they are doubled.
 - With confined bandwidth
- Use of Real Type for Off-diagonal Data
 - The complex matrix, $\tilde{\mathbf{A}} \equiv \mathbf{A} \Delta t \cdot \theta_k \mathbf{I}$, has complex numbers only on diagonal elements.
 - It is possible to separate the off-diagonals and store them in a real variable array.
 - The real array enables higher transfer rate of elements from global memory.
 - Also, the complexity of local operations is alleviated.

Better Access Pattern to Diagonal Data

- During iterative solution, it should read a diagonal element exclusively.
 - Jacobi preconditioner with BiCGSTAB
 - Gauss-Seidel solution
- Reading only one diagonal in an indirect manner needs a mapping array.
- However, the datum in separated arrays can be directly accessed.

 $\mathbf{n} = \alpha_0 \mathbf{n}_0 + \operatorname{Re}\left(\sum_k \alpha_k \left(\mathbf{A}\Delta t - \theta_k \mathbf{I}\right)^{-1} \mathbf{n}_0\right)$

 $\mathbf{n}, \mathbf{A} \in \square^{m}, m$: the number of nuclides

 $\alpha_j, \theta_j \in \Box$

Disadvantages of the BiCGSTAB based Old Solver

- Jacobi preconditioned BiCGSTAB was applied to the old iterative solver.
- A BiCGSTAB solution requires much operations per iteration, but it is not problematic.
 - If a kernel can fully utilize registers
- Large size of global memory should be allotted for independent buffers of residual and direction vectors.
 - Vectors are also called as 'workspace'.
 - At least 7 vectors per thread, while nTRACER assigns thousands of threads to a kernel
- Also, the access to them takes much of the solution time.

Benefits from Application of Gauss-Seidel Method

- The Gauss-Seidel based solver takes advantage from small iterations and buffers needed.
 - Much simpler process than BiCGSTAB
 - Only 3 buffer vectors necessary
- Actually, it is turned out to take less iterations than BiCGSTAB.
- Also, it is stable enough.
 - For the more complex depletion problems, it is stable. (PRAGMA)

Overhead Optimization

- Implicit Transposition during Setup
- Fast Non-zero Index Search
- Explicit copy with CUDA API

System Array Transposition for NZEM Storage

- As illustrated earlier, GPU achieves better performance with the NZEM ordering.
- The setup routine used for CPU solvers returns an RM order array.
- To copy NZEM array to the device, the array should be transposed.
- However, a heavy bottleneck occurs during the processes of transposition.
 - Typecasting and copy

Implicit Transposition

- To eliminate the overhead, the system data are directly filled in an NZEM array.
 - Non-zero major off-diagonals and diagonals
- The matrix array in NZEM ordering is copied to a GPU without temporary copies.
- In spite of no additional operations, this change increases the cost for setup.
 - Smaller than the decrement of copy time
- The enlarged cost stems from low cache efficiency.
 - Each thread takes the matrix of a region.
 - An RM array can hold data of the matrix on a cache.
 - However, the data of a region is not contiguously located in an NZEM array.
- At the expense of setup time, the temporary copy time can be reduced further.

Indirect Accesses during Matrix Setup Phase

- Most of sparse matrix formats require indirect access to an element.
 - The row and column indices are listed in two vectors.
 - To locate a non-zero element, search through the index maps is needed.
- When adding transmutation rate, the proper non-zero index should be searched.
- The search takes a few times of iterations while reading the map arrays.
 - Converged use of bandwidth with multicores
- With limited use of CPU cores, this was not efficient resulting large time increment. Column Index

Tabularization of Non-zero Index with Nuclear Transmutation

- Instead of search iterations, it is possible to tabularize the non-zero indices.
 - A table contains the indices corresponding to transmutation types.
 - $\quad \text{e.g. (n, \gamma), (n, 2n), (fission), } \cdots$
- All the regions can share the single table due to an identical set of chains.
 - All the matrices have the same sparsity pattern only varying reaction rates.
- This makes the location much faster with small number of cores.

Overloaded Intrinsic of PGI Fortran to Device APIs

- The PGI compiler has overloaded many intrinsic operations to handle device data.
 - e.g. exp, sin, cos for variables in a kernel
 - allocate, deallocate of global memory on a device
- Exploiting it, the assignment operation (=) was used to copy-in the system data.
- They are quite convenient, but sometimes, not effective for some cases.

Use of cudaMemCpy Function

- The same functionality can be done with cudaMemCpy function.
 - Communication between host and device
- Thus, the assignment operators were all changed to them.
- They shorten the time for communication with a factor of 5.
 - The decrement is solely from communication between the host and device.
- As a result, the communication fully exploit the PCI-e bandwidth.

Performance Analysis

- Problem Description
- Enhancements of Matrix Exponential Solver
- Reduction of the Overheads
- Overall Performance of GPU Depletion Solver

Problem Description

APR1400 2D Core Problem

- Steady-state condition : HFP with infinite mass flow of coolant
- Depletion condition : Up to 15 GWd/tHM
 - Average step as 1 GWd/tHM
 - In sum, 18 burnup steps
- Depletion domain : ~ 74,000

Computing Resource Specification

- GPU version results : PGI Fortran 19.4
- CPU version results : Intel Fortran 19.0.4

CPU	2 x Intel Xeon E5-2630 v4 20 Cores, 2.4 GHz (Boost)
GPU	NVIDIA GeForce RTX 2080 Ti
Compiler	PGI Fortran 19.4 Intel Fortran 19.0.4

Description of Items in Time Profiles

- Sys. Setup : System setup time
- Sol : Solution time
 - Includes the execution of solver kernel and copy-out of solution vectors
- Copy : The time needed for copy-in to global memory
 - Includes the copy-in and explicit transposition of the system
- Post : Post-processing time

Poor Performance of the Old GPU Solver

- The old GPU solver was even slower than the CPU version.
- The 'Base' case shows better performance for the solution, but the others are largely increased.
- Among them, setup time is slower due to the inferior performance of PGI compilers.

Improvement of Solution Performance

- Each case shows the improved solution time in a progressive manner.
- The basic case, 'RM' takes 13 minutes for whole depletion steps.
- By applying NZEM storage on the kernel, it shorten the time by 25%.
 - The necessity of NZEM ordering
- Additionally, separation of matrices can decrease it further by 30% of the RM.
- The replaced iterative method makes the most reduction of solution time.
 - Thanks to much smaller workspace and less frequent global memory read

Overhead Improvements

- The figure shows the time of two items, system setup and copy.
 - The maximal number of cores were utilized for all cases.
- The largest portion at NZEM case was the copy time.
 - Due to explicit transposition processes.
- Implicit transposition reduced it as 25%, while the setup time was doubled.
- The benefit from fast index search was smaller than the other cases.
 - It will be more evident with small number of CPU cores.
- Finally, explicit copy decreases the copy time under a minute.

Overhead Profile with Limited Usage of CPU

- Due to the topology of nTRACER, the performance with fewer CPU cores is an important parameter.
 - When assigning the same number of planes as GPU cards in a node
 - Limited CPU resources is more realistic considering the 3D problems.
- The numbers at cases indicates the used number of CPU cores.
 - 4 GPUs equipped per node
- This profile is analyzed to see the effect on setup time.
 - The only part dependent on CPU resources

Effectiveness of Fast Index Search

- Increment from limited CPU cores was found to be large.
 - About 60% only applying implicit transposition
- The gap has been further decreased by fast index searches.
- Also, the time with 5 cores decreases much from the fast search.
 - 15% of decrease with 20 cores
 - Over 30% of decrease with 5 cores
- Explicit copy affects little on setup in the practical sense.
 - Rather effective for the copy time

Overall Performance Comparison

- Due to the overheads, the overall time of the old GPU solver was larger than the CPU solver.
- After several times of optimization, the overheads have been decreased much.
 - At the expense of setup time increment
- The matrix exponential solver was also optimized so that it is about one-fifth of the base case.
- The speed of GPU solvers now definitely outrun that of the CPU version.
- In addition, the CPU solver time would be degraded with small number of CPU cores.
 - Above an hour with quarter of the full CPU resources

Completion of GPU Acceleration for Every Hotspot

- Including the optimized depletion solver, all the hotspots are successfully accelerated with GPU cards.
- Now, every part has better performance compared to the CPU version.

NZEM Storage as GPU-friendly Data Structure

- NZEM storage has been proved to be efficient on GPUs' memory architecture.
- By selection of compute-friendly data structures, 30% of the time has been decreased.

Effectiveness of Gauss-Seidel Based Iterative CRAM Solver

- It is stable enough with the simple iterative method.
- In addition, the performance was very fast thanks to fewer buffers needed.
- Overhead Reduction through Various Measures
 - With the three measures, over 50% of the time from overheads were reduced.
 - Especially, under the short of CPU resources, they consumed only a few minutes.

Expectation of Good Scalability