
Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

Optimization of the GPU-Based Depletion Solver in nTRACER

Han Gyu Lee and Han Gyu Joo*

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
*Corresponding author: joohan@snu.ac.kr

1. Introduction

Massive parallelization with graphics processing units

(GPU) had already been applied in nTRACER, which

demonstrated substantial performance [1]. It successfully

accelerated the hotspots of the steady-state calculation

module, especially the planar method of characteristics

(MOC). Recently, a more extensive GPU offloading had

been made to accelerate the entire procedure for whole-

core depletion calculations [2].

However, previous research could not extract fully the

performance of GPUs for depletion calculations. As the

main memory of a GPU is not shared with CPUs, explicit

communications of the memory caused non-negligible

overheads. Furthermore, having an optimal data structure

for GPU acceleration is not necessarily optimal for CPU

parallelization. Due to such reasons, the depletion solver

had shown less improvements than other calculations.

This leads to the large portion of depletion calculations

during a burnup step as Figure 1. In addition, the detailed

profile of depletion calculations revealed the stagnation

from overheads as much as half of the total time. It was

necessary to lessen those overheads, while accelerate the

main solution processes.

Figure 1 Time share in a depletion step.

In this paper, GPU optimization techniques focusing

on the depletion solver are presented. The optimization

focuses on two aspects: enhancing the performance of

the matrix solver and reducing the overheads of the CPU

operations. The performance of the optimized depletion

solver will be demonstrated thereafter.

2. Optimization of Matrix Exponential Solver

2.1 Non-Zero Element Major (NZEM) Storage

Conventional CPU-based solvers prefer to configure

the array of the systems with region major (RM) storage.

RM arrays are not only readable and user-friendly, but

also favorable for the caching mechanism of CPUs where

the temporal locality of access is important. Due to these

benefits, the prototype GPU depletion solver had adopted

the RM storage scheme.

However, as demonstrated on Figure 2, NZEM storage

is more suitable for coalesced memory accesses on GPUs

when region-wise parallelism is applied. Under the RM

storage scheme, the accesses are strided and the memory

coalescing is barely expectable.

Figure 2 Global memory access patterns under (a) NZEM and

(b) RM storage schemes.

Nevertheless, the systems are setup from the CPU side,

and in this aspect, RM storage has a benefit that it does

not require the transposition of systems for the use in the

GPU solver. To utilize NZEM storage, the CPU needs to

transpose the RM array to the NZEM array, while if the

RM storage is utilized on GPU, the transposition process

is not required.

2.2 Separating Diagonal and Off-diagonal Elements

The prototype setup and solver routines were storing

the arrays in complex double types; it is because that

Chebyshev rational approximate method (CRAM) is

defined in the complex space. However, not all the

elements are complex; while the vectors are all complex

numbers, only the diagonal elements of the matrices are

complex numbers as shown in equation (1). Therefore, it

is possible to separate the matrices into diagonal and off-

diagonal parts and use different data types; the former

uses complex double while the latter uses native double.

()
1

0 0 0Re j j

j

t  
− 

= +  − 
 
n n A I n (1)

where

n Number density

j j-th residue (complex)

j j-th pole (complex)

A Burnup matrix

This separation is beneficial in terms of memory usage

and access burden of off-diagonal elements. Considering

that the off-diagonal part takes 80% of a matrix, it can

reduce the memory usage of a unit matrix significantly

and thereby allowing to increase the size of each batch.

In addition, it becomes much easier to locate the diagonal

elements in a matrix. Sparse matrix formats all have its

own mapping arrays to locate elements, and nTRACER

also utilizes the compressed sparse row (CSR) format to

save the burnup matrices. If diagonal elements are

included in the non-zero array with off-diagonals, access

to the diagonal terms should be done by an indirection

using the mapping arrays. On the other hand, elements in

a separate diagonal array can be directly accessed.

2.3 Gauss-Seidel Iterative Solver

The GPU depletion solver has employed biconjugate

gradient stabilized method (BiCGSTAB) for the matrix

inversion. However, it turned out that the Gauss-Seidel

(GS) method is more efficient for inverting the matrices

in CRAM due to large diagonal dominance. As the result,

GS could also converge in a few iterations and eventually

BiCGSTAB required more operations than GS. Thus, we

decided to replace the iterative linear system solution

method.

Also, GS can reduce the size of buffer memories. Due

to the region-wise parallelism, each thread should have

separate buffers, named workspace, to save intermediate

vectors like the residual or the solution of the previous

iteration. A thread requires seven temporary vectors with

BiCGSTAB, while only three are required in GS.

To simply put, GS is cheaper than BiCGSTAB as the

increase in the number of iterations is small enough to be

compensated by the reduction of operations, and it also

uses smaller memory due to the reduced workspace size.

3. Overhead Optimization

3.1 Implicit Transposition during Setup

It was pointed out that to use NZEM on the solver, an

explicit transposition of the systems is required. To avoid

this, an implicit transposition, which simply generates

the systems directly in the NZEM storage from the setup

phase was implemented. This increases the system setup

time as the NZEM storage is not CPU-friendly, but the

transposition burden can be eliminated.

Figure 3 illustrates the CPU cache usage of NZEM and

RM storages. When an NZEM array is written, the cache

block does not contain the other elements in a region. On

the other hands, the cache with RM array holds the data

of a region which the thread takes. This increase the use

rate of cache and, consequently, ensure the better parallel

efficiency.

This eliminates the temporary copy of the systems

which involves a rearrangement of arrays from RM to

NZEM. If the CPU transposes the systems explicitly, the

systems first have to be copied to a different buffer with

reversed storage before copying the systems to the GPU.

This temporary copy time on CPU used to take so much

time, therefore, the goal of the implicit transposition is to

eliminate the overhead of creating a temporary copy of

the systems on CPU in spite of the increased setup cost.

Figure 3 Cache usage of CPU cores with different storages.

3.2 Fast Non-zero Index Search

This is to reduce the additional burden caused by the

implicit transposition. Since the depletion system setup

is performed on CPU, it is critical to the performance of

3D calculation as the CPU resources get limited [2]. Thus,

unlike other tasks, this focuses on the efficiency of CPU

operations.

When locating the non-zero elements, both setup and

solver routines utilize the CSR mapping arrays. The main

problem of using the mapping arrays is that an iteration

is required to locate a specific element. While this is not

a problem for the solver which sweeps all the elements

sequentially, the setup routine has to jump between the

elements to generate the systems.

Therefore, a separate non-zero index table is defined

which receives a reaction type and a target nuclide and

returns the corresponding non-zero index. The pseudo-

codes in Figure 4 below illustrate how the pre-defined

index table can be effectively used to find the non-zero

indices. ix and ir indicates the index of the target nuclide

and the reaction type, respectively. The arrays, isoRx and

inzRx, stores the indices of isotope and non-zero element

after neutron reaction.

Figure 4 Pseudo-codes for non-zero index search with

(a) linear search and (b) pre-defined index map.

3.3 Explicit Copy with CUDA API

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

PGI Fortran supports the intrinsic assignment operator

(=) to copy arrays between CPU and GPU. However, it

turned out that the operator is in fact substituted by a pre-

defined function during the compile time which was not

efficient. Hence, the assignment operators were replaced

with the cudaMemcpy API, and all the copy operations

now fully exploit the PCI-e bandwidth.

4. Performance Analysis

This section presents the performance analysis results

for the APR1400 2D core problem [5], and the core was

depleted up to 15 GWd/tHM. The time specified in the

graphs are the total computing time in the cycle depletion

calculation. The computing resources used are listed in

Table 1. The CPU solver used the Intel Fortran compiler

while the GPU solver was compiled with PGI Fortran.

Table 1 Specification of the workstation.

CPU
2 × Intel Xeon E5-2630 v4

20 Cores, 2.4 GHz (Boost)

GPU NVIDIA GeForce RTX 2080 Ti

Compiler
PGI Fortran 19.4

Intel Fortran 19.0.4

The base performance of the GPU solver without any

optimizations and the performance of the CPU solver are

compared at Figure 5. ‘Sys. Setup’ indicates the time for

the system setup, ‘Sol’ is the time for the CRAM solution,

and ‘Copy’ means all the data copy involving the systems;

namely, the data copy between CPU and GPU and the

temporary copy on the CPU side. Finally, ‘Post’ is the

time for post-processes like updating number densities

with the solutions of CRAM.

The solution time shows slight improvement, but the

other parts were poorer. Due to the inferior performance

of the PGI compiler, system setup takes longer time than

CPU. Furthermore, the copy time is literally zero in the

CPU solver as it does not involve communications with

GPU, while it occupies a significant portion in the GPU

solver. As the result, the GPU-based depletion solver has

become even slower than the CPU calculation in total.

Such result motivated this research to reduce the burden

of ancillary overheads in the GPU solver.

Figure 5 Depletion performance comparison between the base

case and the CPU solver.

4.1 Enhancements of Matrix Exponential Solver

The progressive improvement of the performance of

the solver by the optimizations is illustrated in Figure 6.

From the comparison of the RM case and NZEM case, it

can be noted that 25% of the time was reduced. This large

reduction is due to a better memory access coalescing.

Combined with NZEM scheme, matrix separation had

reduced the time by 30%. The major factor is the reduced

overheads to access off-diagonal elements. Direct access

to diagonal elements may affect less than the former, due

to fewer number of diagonals.

Figure 6 Matrix exponential solution time comparison.

However, among all the optimizations, applying GS to

CRAM is the most effective treatment. It is no wonder

that it achieves the greatest improvement as operations

and memory accesses were reduced significantly.

4.2 Reduction of the Overheads

The progressive reduction of the overheads is shown

in Figure 7. In this case, 20 cores of CPU were used for

all the calculations.

Figure 7 Depletion solver CPU overhead reduction.

By adopting the implicit transposition, the majority of

the copy overhead had disappeared. This optimization

eliminated both the transposition and the temporary copy

on CPU. As the result, the copy time was reduced to one-

fourth. Using the CUDA memory copy APIs reduced the

copy time further by another 75%, and as the result, 95%

of the copy overhead had been eliminated.

Nevertheless, the system setup time increased due to

the worsened cache utilization on CPU. While this is an

expected consequence, it is an unexpected result that the

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

fast non-zero index search using the pre-defined index

map shows little effect.

Next investigation is the dependence of the overheads

with the number of CPU cores. Recall from our previous

research [2] that nTRACER employs a plane-per-GPU

distributed parallel topology and a typical GPU cluster

mounts multiple GPUs per node. Resultantly, the number

of CPU cores that can be assigned per GPU is decreased

in 3D calculations. Therefore, the behavior of overheads

with reduced number of CPU cores should be examined

to confirm the scalability to 3D calculations.

Figure 8 demonstrates the profile for the two different

usages of CPU cores. The digits, ‘5’ and ‘20’, specify the

number of used CPU cores.

Figure 8 Overheads comparison by different usage of CPUs.

Only comparing the 20-core cases, fast index search

seems less effective with only 30 seconds of reduction.

However, it becomes powerful with limited use of CPU

resources with 2 minutes shorter time. Therefore, in the

aspects of the system setup performance, the fast search

optimization takes an important role for 3D calculations.

4.3 Overall Performance of GPU Depletion Solver

At the early in this chapter, the poorer performance of

GPU depletion solver was pointed out. However, after a

few progresses, the GPU solver outperforms the one of

CPU version. And, the results are described on Figure 9.

‘5’ and ‘20’ stands for the usage of CPU resources, and

‘Base’ case is from the initial version and ‘Optimized’

case is from the latest version after various optimizations.

Figure 9 Performance of Various Depletion Solvers

Even with the full CPU resources, the GPU solver had

not overcome the CPU solver except the solution time.

Several times of optimizations lessen the incidental

overheads and had shortened the solution time. With

some sacrifice of setup, the total depletion calculation

can be finished within a few minutes.

5. Conclusion

nTRACER had completed GPU acceleration of all the

hotspot procedures in cycle the depletion. However, the

GPU depletion calculations had little improvement over

the CPU solver. Therefore, additional optimizations for

the GPU depletion solver have been made in this work.

Specifically, calculating the matrix exponentials using

the iterative CRAM solver and unnecessary overheads

by CPUs were optimized.

NZEM storage system, separation of burnup matrices

and Gauss-Seidel as a linear system solver were adopted

to shorten the solution time. Also, implicit transposition,

fast non-zero index search during setup and explicit copy

through CUDA API functions makes the overheads less

burdensome. Some of them causes adverse effects, but

overall performance of the depletion solver becomes way

better.

Nevertheless, the enlarged portion of system setup as

a result of implicit transposition is still an issue. It seems

small enough when using maximal CPU resources, but it

takes over 50 % of the whole time of depletion. One

excuse for this big portion is the absolute time is still

much less than matrix exponential solution time of the

CPU solver. Considering all the limitations, the GPU

solver is much better due to the fact that same

degradation at the CPU solver is expected to occur with

limited number of cores.

ACKNOWLEDGEMENTS

This research is supported by National Research Foundation

of Korea (NRF) Grant No. 2016M3C4A7952631 (Realization

of Massive Parallel High Fidelity Virtual Reactor)

REFERENCES

[1] N. Choi, J. Kang and H. G. Joo, “Preliminary Performance

Assessment of GPU Acceleration Module in nTRACER,”

Transactions of the Korean Nuclear Society Autumn Meeting,

Yeosu, Korea, Oct. 24-25, 2018.

[2] H. G. Lee, S. Jae, N. Choi, J. Kang and H. G. Joo, “Progress

of GPU Acceleration Module in nTRACER for Cycle

Depletion,” Jeju, Korea, July. 9-10, 2020.

[3] M. Pusa, “Rational Approximations to the Matrix

Exponential in Burnup Calculations,” Nuclear Science and

Engineering 169(2), pp. 155-167, 2011.

[4] A.Yamamoto, M. Tatusmi and N. Sugimura, “Numerical

Solution of Stiff Burnup Equation with Short Half Lived

Nuclides by the Krylov Subspace Method,” Journal of Nuclear

Science and Technology 44(2), pp. 147-154, 2007.

[5] H. Hong and H. G. Joo, “Analysis of the APR1400 PWR

Initial Core with the nTRACER Direct Whole Core Calculation

Code and the McCARD Monte Carlo Code,” Transactions of

the Korean Nuclear Society Spring Meeting, Jeju, Korea, May

18-19, 2017.

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

