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1. Introduction

Massive parallelization with graphics processing units 

(GPU) had already been applied in nTRACER, which 

demonstrated substantial performance [1]. It successfully 

accelerated the hotspots of the steady-state calculation 

module, especially the planar method of characteristics 

(MOC). Recently, a more extensive GPU offloading had 

been made to accelerate the entire procedure for whole-

core depletion calculations [2]. 

However, previous research could not extract fully the 

performance of GPUs for depletion calculations. As the 

main memory of a GPU is not shared with CPUs, explicit 

communications of the memory caused non-negligible 

overheads. Furthermore, having an optimal data structure 

for GPU acceleration is not necessarily optimal for CPU 

parallelization. Due to such reasons, the depletion solver 

had shown less improvements than other calculations. 

This leads to the large portion of depletion calculations 

during a burnup step as Figure 1. In addition, the detailed 

profile of depletion calculations revealed the stagnation 

from overheads as much as half of the total time. It was 

necessary to lessen those overheads, while accelerate the 

main solution processes. 

Figure 1 Time share in a depletion step. 

In this paper, GPU optimization techniques focusing 

on the depletion solver are presented. The optimization 

focuses on two aspects: enhancing the performance of 

the matrix solver and reducing the overheads of the CPU 

operations. The performance of the optimized depletion 

solver will be demonstrated thereafter. 

2. Optimization of Matrix Exponential Solver

2.1 Non-Zero Element Major (NZEM) Storage 

Conventional CPU-based solvers prefer to configure 

the array of the systems with region major (RM) storage. 

RM arrays are not only readable and user-friendly, but 

also favorable for the caching mechanism of CPUs where 

the temporal locality of access is important. Due to these 

benefits, the prototype GPU depletion solver had adopted 

the RM storage scheme. 

However, as demonstrated on Figure 2, NZEM storage 

is more suitable for coalesced memory accesses on GPUs 

when region-wise parallelism is applied. Under the RM 

storage scheme, the accesses are strided and the memory 

coalescing is barely expectable. 

Figure 2 Global memory access patterns under (a) NZEM and 

(b) RM storage schemes. 

Nevertheless, the systems are setup from the CPU side, 

and in this aspect, RM storage has a benefit that it does 

not require the transposition of systems for the use in the 

GPU solver. To utilize NZEM storage, the CPU needs to 

transpose the RM array to the NZEM array, while if the 

RM storage is utilized on GPU, the transposition process 

is not required. 

2.2 Separating Diagonal and Off-diagonal Elements 

The prototype setup and solver routines were storing 

the arrays in complex double types; it is because that 

Chebyshev rational approximate method (CRAM) is 

defined in the complex space. However, not all the 

elements are complex; while the vectors are all complex 

numbers, only the diagonal elements of the matrices are 

complex numbers as shown in equation (1). Therefore, it 

is possible to separate the matrices into diagonal and off-

diagonal parts and use different data types; the former 

uses complex double while the latter uses native double. 
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n  Number density 

j j-th residue (complex) 

j j-th pole (complex)

A Burnup matrix



This separation is beneficial in terms of memory usage 

and access burden of off-diagonal elements. Considering 

that the off-diagonal part takes 80% of a matrix, it can 

reduce the memory usage of a unit matrix significantly 

and thereby allowing to increase the size of each batch. 

In addition, it becomes much easier to locate the diagonal 

elements in a matrix. Sparse matrix formats all have its 

own mapping arrays to locate elements, and nTRACER 

also utilizes the compressed sparse row (CSR) format to 

save the burnup matrices. If diagonal elements are 

included in the non-zero array with off-diagonals, access 

to the diagonal terms should be done by an indirection 

using the mapping arrays. On the other hand, elements in 

a separate diagonal array can be directly accessed. 

2.3 Gauss-Seidel Iterative Solver 

The GPU depletion solver has employed biconjugate 

gradient stabilized method (BiCGSTAB) for the matrix 

inversion. However, it turned out that the Gauss-Seidel 

(GS) method is more efficient for inverting the matrices 

in CRAM due to large diagonal dominance. As the result, 

GS could also converge in a few iterations and eventually 

BiCGSTAB required more operations than GS. Thus, we 

decided to replace the iterative linear system solution 

method. 

Also, GS can reduce the size of buffer memories. Due 

to the region-wise parallelism, each thread should have 

separate buffers, named workspace, to save intermediate 

vectors like the residual or the solution of the previous 

iteration. A thread requires seven temporary vectors with 

BiCGSTAB, while only three are required in GS. 

To simply put, GS is cheaper than BiCGSTAB as the 

increase in the number of iterations is small enough to be 

compensated by the reduction of operations, and it also 

uses smaller memory due to the reduced workspace size. 

3. Overhead Optimization

3.1 Implicit Transposition during Setup 

It was pointed out that to use NZEM on the solver, an 

explicit transposition of the systems is required. To avoid 

this, an implicit transposition, which simply generates 

the systems directly in the NZEM storage from the setup 

phase was implemented. This increases the system setup 

time as the NZEM storage is not CPU-friendly, but the 

transposition burden can be eliminated. 

Figure 3 illustrates the CPU cache usage of NZEM and 

RM storages. When an NZEM array is written, the cache 

block does not contain the other elements in a region. On 

the other hands, the cache with RM array holds the data 

of a region which the thread takes. This increase the use 

rate of cache and, consequently, ensure the better parallel 

efficiency. 

This eliminates the temporary copy of the systems 

which involves a rearrangement of arrays from RM to 

NZEM. If the CPU transposes the systems explicitly, the 

systems first have to be copied to a different buffer with 

reversed storage before copying the systems to the GPU. 

This temporary copy time on CPU used to take so much 

time, therefore, the goal of the implicit transposition is to 

eliminate the overhead of creating a temporary copy of 

the systems on CPU in spite of the increased setup cost. 

Figure 3 Cache usage of CPU cores with different storages. 

3.2 Fast Non-zero Index Search 

This is to reduce the additional burden caused by the 

implicit transposition. Since the depletion system setup 

is performed on CPU, it is critical to the performance of 

3D calculation as the CPU resources get limited [2]. Thus, 

unlike other tasks, this focuses on the efficiency of CPU 

operations. 

When locating the non-zero elements, both setup and 

solver routines utilize the CSR mapping arrays. The main 

problem of using the mapping arrays is that an iteration 

is required to locate a specific element. While this is not 

a problem for the solver which sweeps all the elements 

sequentially, the setup routine has to jump between the 

elements to generate the systems. 

Therefore, a separate non-zero index table is defined 

which receives a reaction type and a target nuclide and 

returns the corresponding non-zero index. The pseudo-

codes in Figure 4 below illustrate how the pre-defined 

index table can be effectively used to find the non-zero 

indices. ix and ir indicates the index of the target nuclide 

and the reaction type, respectively. The arrays, isoRx and 

inzRx, stores the indices of isotope and non-zero element 

after neutron reaction. 

Figure 4 Pseudo-codes for non-zero index search with 

(a) linear search and (b) pre-defined index map. 

3.3 Explicit Copy with CUDA API 

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18



PGI Fortran supports the intrinsic assignment operator 

(=) to copy arrays between CPU and GPU. However, it 

turned out that the operator is in fact substituted by a pre-

defined function during the compile time which was not 

efficient. Hence, the assignment operators were replaced 

with the cudaMemcpy API, and all the copy operations 

now fully exploit the PCI-e bandwidth. 

4. Performance Analysis

This section presents the performance analysis results 

for the APR1400 2D core problem [5], and the core was 

depleted up to 15 GWd/tHM. The time specified in the 

graphs are the total computing time in the cycle depletion 

calculation. The computing resources used are listed in 

Table 1. The CPU solver used the Intel Fortran compiler 

while the GPU solver was compiled with PGI Fortran. 

Table 1 Specification of the workstation. 

CPU 
2 × Intel Xeon E5-2630 v4 

20 Cores, 2.4 GHz (Boost) 

GPU NVIDIA GeForce RTX 2080 Ti 

Compiler 
PGI Fortran 19.4 

Intel Fortran 19.0.4 

The base performance of the GPU solver without any 

optimizations and the performance of the CPU solver are 

compared at Figure 5. ‘Sys. Setup’ indicates the time for 

the system setup, ‘Sol’ is the time for the CRAM solution, 

and ‘Copy’ means all the data copy involving the systems; 

namely, the data copy between CPU and GPU and the 

temporary copy on the CPU side. Finally, ‘Post’ is the 

time for post-processes like updating number densities 

with the solutions of CRAM. 

The solution time shows slight improvement, but the 

other parts were poorer. Due to the inferior performance 

of the PGI compiler, system setup takes longer time than 

CPU. Furthermore, the copy time is literally zero in the 

CPU solver as it does not involve communications with 

GPU, while it occupies a significant portion in the GPU 

solver. As the result, the GPU-based depletion solver has 

become even slower than the CPU calculation in total. 

Such result motivated this research to reduce the burden 

of ancillary overheads in the GPU solver. 

Figure 5 Depletion performance comparison between the base 

case and the CPU solver. 

4.1 Enhancements of Matrix Exponential Solver 

The progressive improvement of the performance of 

the solver by the optimizations is illustrated in Figure 6. 

From the comparison of the RM case and NZEM case, it 

can be noted that 25% of the time was reduced. This large 

reduction is due to a better memory access coalescing. 

Combined with NZEM scheme, matrix separation had 

reduced the time by 30%. The major factor is the reduced 

overheads to access off-diagonal elements. Direct access 

to diagonal elements may affect less than the former, due 

to fewer number of diagonals. 

Figure 6 Matrix exponential solution time comparison. 

However, among all the optimizations, applying GS to 

CRAM is the most effective treatment. It is no wonder 

that it achieves the greatest improvement as operations 

and memory accesses were reduced significantly. 

4.2 Reduction of the Overheads 

The progressive reduction of the overheads is shown 

in Figure 7. In this case, 20 cores of CPU were used for 

all the calculations. 

Figure 7 Depletion solver CPU overhead reduction. 

By adopting the implicit transposition, the majority of 

the copy overhead had disappeared. This optimization 

eliminated both the transposition and the temporary copy 

on CPU. As the result, the copy time was reduced to one-

fourth. Using the CUDA memory copy APIs reduced the 

copy time further by another 75%, and as the result, 95% 

of the copy overhead had been eliminated. 

Nevertheless, the system setup time increased due to 

the worsened cache utilization on CPU. While this is an 

expected consequence, it is an unexpected result that the 
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fast non-zero index search using the pre-defined index 

map shows little effect. 

Next investigation is the dependence of the overheads 

with the number of CPU cores. Recall from our previous 

research [2] that nTRACER employs a plane-per-GPU 

distributed parallel topology and a typical GPU cluster 

mounts multiple GPUs per node. Resultantly, the number 

of CPU cores that can be assigned per GPU is decreased 

in 3D calculations. Therefore, the behavior of overheads 

with reduced number of CPU cores should be examined 

to confirm the scalability to 3D calculations. 

Figure 8 demonstrates the profile for the two different 

usages of CPU cores. The digits, ‘5’ and ‘20’, specify the 

number of used CPU cores. 

Figure 8 Overheads comparison by different usage of CPUs. 

Only comparing the 20-core cases, fast index search 

seems less effective with only 30 seconds of reduction. 

However, it becomes powerful with limited use of CPU 

resources with 2 minutes shorter time. Therefore, in the 

aspects of the system setup performance, the fast search 

optimization takes an important role for 3D calculations. 

4.3 Overall Performance of GPU Depletion Solver 

At the early in this chapter, the poorer performance of 

GPU depletion solver was pointed out. However, after a 

few progresses, the GPU solver outperforms the one of 

CPU version. And, the results are described on Figure 9. 

‘5’ and ‘20’ stands for the usage of CPU resources, and 

‘Base’ case is from the initial version and ‘Optimized’ 

case is from the latest version after various optimizations. 

Figure 9 Performance of Various Depletion Solvers 

Even with the full CPU resources, the GPU solver had 

not overcome the CPU solver except the solution time. 

Several times of optimizations lessen the incidental 

overheads and had shortened the solution time. With 

some sacrifice of setup, the total depletion calculation 

can be finished within a few minutes. 

5. Conclusion

nTRACER had completed GPU acceleration of all the 

hotspot procedures in cycle the depletion. However, the 

GPU depletion calculations had little improvement over 

the CPU solver. Therefore, additional optimizations for 

the GPU depletion solver have been made in this work. 

Specifically, calculating the matrix exponentials using 

the iterative CRAM solver and unnecessary overheads 

by CPUs were optimized. 

NZEM storage system, separation of burnup matrices 

and Gauss-Seidel as a linear system solver were adopted 

to shorten the solution time. Also, implicit transposition, 

fast non-zero index search during setup and explicit copy 

through CUDA API functions makes the overheads less 

burdensome. Some of them causes adverse effects, but 

overall performance of the depletion solver becomes way 

better. 

Nevertheless, the enlarged portion of system setup as 

a result of implicit transposition is still an issue. It seems 

small enough when using maximal CPU resources, but it 

takes over 50 % of the whole time of depletion. One 

excuse for this big portion is the absolute time is still 

much less than matrix exponential solution time of the 

CPU solver. Considering all the limitations, the GPU 

solver is much better due to the fact that same 

degradation at the CPU solver is expected to occur with 

limited number of cores. 
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