

Transactions of the Korean Nuclear Society Autumn Meeting

December 17 – 18, 2020

Initial Development of Depletion Capability in the GPU-Based Monte Carlo Code PRAGMA

Kim Kyung Min, Namjae Choi, Han Gyu Lee, Han Gyu Joo Department of Nuclear Engineering, Seoul National University December 17 - 18, 2020

Contents

	Int	roduction	3	
•	Burnup Tally		7	
		Reaction Rate Tally in Other Codes	8	
		Limitation on the Tally Methods	9	
•	Multilevel Spectral Collapse			
		Concept	11	
		Assembly-wise MSC	12	
		Pin-wise MSC	14	
•	Evaluation on 2D Problems			
		Fine Group Spectrum Tally	17	
		Assembly-wise MSC	18	
		Pin-wise MSC	21	
•	Evaluation on 3D Problems			
		Examination on Eigenvalue	24	
		Examination on Axial Power	25	
•	Со	nclusion & Future Plan	26	

Overview of PRAGMA

PRAGMA Power Reactor Analysis using GPU-based Monte Carlo Algorithm

• Funded by KHNP through K-CLOUD project.

- Language : CUDA C++
- Objectives of the PRAGMA code
 - Apply dedicated optimizations for power reactor analysis.
 - Employ massive number of particles at least over 10⁸ per cycle to eliminate inter-cycle correlation and reduce the number of active cycles.
 - Enable efficient simulation in feasible time scale on small cluster equipped with consumer-grade GPUs.

GeForce RTX 2080 Ti (\$999) 13,450 GFLOPS FP32 420.2 GFLOPS FP64 11 GB (616.0 GB/s GDDR6)

Tesla V100 (\$10,664) 14,028 GFLOPS FP32 7,014 GFLOPS FP64 16 GB (900GB/s HBM2)

BEAVRS Zero Power Physics Test

Calculation Condition

- 100 million particles / cycle
- 100 active cycles
- Execution time < 15 minutes

Comparison with KENO-VI

Quarter Core (KENO-VI) vs Full Core (PRAGMA)

Cycle Depletion for Power Reactors with PRAGMA

- Minimize increase of calculation time.
- Memory and performance optimization for GPU
- Need to tackle memory burden.

Seoul National University Reactor Physics Laboratory

02

Burnup Tally

- Conventional Methods
- Limitations

Conventional Methods

$$\frac{dN_i}{dt} = -\left(\lambda_i + \overline{\sigma_i \phi}\right)N_i + \sum_i \left(\lambda_{ji} + \overline{\sigma_{ji} \phi}\right)N_j$$

Energy bounds [eV]	Number of equilethargy bins	
$2.0 \times 10^7 - 1.0 \times 10^7$	1000	
$1.0 \times 10^7 - 1.0 \times 10^6$	1000	
1.0×10^{6} - 1.0×10^{5}	4000	
$1.0 \times 10^5 - 1.0 \times 10^4$	4000	
$1.0 \times 10^4 - 1.0 \times 10^3$	10000	
$1.0 \times 10^3 - 1.0 \times 10^2$	10000	
$1.0 \times 10^2 - 1.0 \times 10^1$	4000	
1.0×10^{1} - 1.0×10^{0}	4000	
$1.0 \times 10^{0} - 1.0 \times 10^{-1}$	1000	
$1.0 \times 10^{-1} - 1.0 \times 10^{-2}$	1000	
$1.0 \times 10^{-2} - 1.0 \times 10^{-3}$	1000	
1.0×10^{-3} - 1.0×10^{-4}	1000	
$1.0 \times 10^{-4} - 1.0 \times 10^{-5}$	1000	

*G. G. Davidson, et al., "Nuclide Depletion Capabilities in the Shift Monte Carlo Code," Ann. Nucl. Energy 114, pp. 259 – 276 (2018)

- McCARD at SNU
- Several types of reaction rates are directly tallied during neutron tracking
 - E.g.) absorption, (n, 2n), (n, 3n), fission, capture, (n, p) and (n, α)
- Those reaction rates are tallied in every neutron track for every nuclide.
- Fine Group Spectrum Tally
 - Shift Monte Carlo Code* at ORNL
 - Fine group spectra are tallied for each depletion region.
 - 43,000 energy bins per depletion region are used to produce one-group reaction rates.

Target Problem and Available GPU VRAM

- Target problem : APR1400 full core
 - Total 3,650,832 tally cells
 - About 11,000,000 depletion regions
- Maximum available GPU VRAM for burnup tally : 100 GB

GPU VRAM

Model	VRAM (GB)
NVIDIA GeForce GTX 1080	8
NVIDIA GeForce RTX 2080 Ti	11
NVIDIA GeForce RTX 3090	24

Online Tally

- For each depletion regions, about 2500 reaction types (ENDF/B-VII.1) are tallied.
- The amount of required memory : 2,500×11,000,000×8 bytes = 205 GB → Overflow!
- Performance degradation heavily imposed on GPU due to massive random access.

Fine Group Spectrum Tally

- According to Shift, 43,000 energy groups are tallied for each depletion regions.
- The amount of required memory : 43,000×11,000,000×8 bytes = 3.5 TB → Impossible!

> Workaround Required!

Multilevel Spectral Collapse

- Concept
- Assembly-wise MSC
- Pin-wise MSC

- Two spectra in different level of geometries can be utilized.
- Finer granularity for larger system and coarser for smaller system (depletion region)
- Multilevel spectral collapse (MSC)

Energy grid of coarse group spectrum

Axial Assembly Segment as Background Geometry

Assembly-wise MSC

- For the fine spectrum,
 - 241 fuel assemblies
 - 36 axial planes
 - 43,000 energy bins
 - > 241 segments/plane × 36 planes × 56,000 bins/segment × 8 bytes/bin = 3.6 GB
- For the coarse spectrum for each depletion domain,
 - 11,000,000 depletion domains
 - 500 energy bins
 - 11,000,000 domains × 500 bins/domain × 8 bytes/bin = 41 GB
- \succ About 45 GB required in total \rightarrow Quite feasible

Radial Pin as Background Geometry

Memory Requirements

- For the fine spectrum,
 - 241 assemblies
 - 236 pins/assembly
 - 43,000 energy bins
 - > 241 assemblies × 236 pins/assembly × 56,000 bins/pin×8 bytes/bin = 20 GB
 - Considering axial mesh, 20 GB × 36 = 720 GB (Overflow)
- For the coarse spectrum for each depletion domain
 - 11,000,000 depletion domains
 - 500 energy bins
 - 11,000,000 domains × 500 bins/domain × 8 bytes/bin = 41 GB
- \succ About 61 GB required in total \rightarrow Yet feasible

Evaluation on 2D Problems

- Fine Group Spectrum Tally
- Assembly-wise MSC
- Pin-wise MSC

Comparison with Online Reaction Rate Tally (McCARD)

- On single pin and single region problem
- Reference : McCARD / STD : ~ 2pcm

Sensitivity of reaction rate on energy grid granularity

Eigenvalue comparison with McCARD

Accuracy Evaluation on APR1400 2D 0-type Assemblies

- 1000 active cycles with 1 million histories per cycle (STD ~ 2 pcm)
- Reference : fine group spectrum tally for all depletion regions

Assembly type	Enrichment (wt%)	
A0	1.72	
B0	3.14	
CO	3.64 / 3.14	

Accuracy Evaluation on APR1400 2D 3-type Assemblies

- 1000 active cycles with 1 million histories per cycle (STD ~ 2 pcm)
- Reference : fine group spectrum tally for every depletion region

Assembly type	Enrichment (wt%)	# of Gd pins	
B3	3.14 / 2.64	16	
С3	3.64 / 3.14	10	

Spectral Difference among UO₂, UO₂-Gd Fuel Pins and Average on Assembly

Spectrum comparison in 2D C3 type assembly

- Accuracy Evaluation of Pin-wise MSC
 - Same problems and conditions as previous

Pin-wise MSC

Pin Power Distribution Evaluation

APR1400 2D C3 assembly, STD ~ 7 pcm

Evaluation on 3D Problem

- Examination on Eigenvalue
- Examination on Axial Power

Examination on Eigenvalue

Pin-wise MSC on 3D Assembly Problems

- 250 active cycles with 4 million histories per cycle
- Reference : fine group spectrum tally for every depletion region

December 18, 2020

Axial Power Evaluation

Axial Power Difference on Burnup

Initial Development of Depletion Capability in PRAGMA

- Confirmed the traditional tally methods are not feasible in our target architecture.
- Developed an alternative, MSC, which employs multilevel spectra.
 - The assembly-wise scheme requires much less memory consumption but shows inaccurate results in the burnable absorbers.
 - The pin-wise scheme needs quite large memory capacity, yet it shows good agreement in the eigenvalue and fission power.
- The pin-level scheme is applied for every 3D assembly problem and axial heterogeneity is not large as expected.

Remaining Instability Issues in 3D Problems

- Xenon equilibrium module cannot completely suppress the uncertainty from MC calculations.
- Instability caused by the uncertainty triggers axial power oscillation in later burnup stages.
- It requires more elaborate methods to resolve.

Online Tally for Specific Reaction Types

- Considered to improve accuracy in Gd-bearing problems.
- Several reaction rates of Gd nuclides and significant fissile will be tallied online to enhance accuracy.
- Optimization
 - GPU porting of hotspots, such as group collapse and CRAM
 - Memory reduction for stable execution
- Whole-core Cycle Depletion