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1. Introduction

Plastic scintillation detectors have been widely used in 

various fields in radiation detection and measurements 

owing to its unique characteristics, but they have poor 

spectroscopic capabilities. To overcome this weakness, 

various methods have been reported for plastic 

scintillation detectors to be have spectroscopic 

capabilities. However, most of them are focused on 

identification of radioactive materials. Several of them 

allow plastic scintillation detectors to identify and 

quantify gamma ray sources, but they are not able to be 

applied to plastic gamma spectra containing statistical 

uncertainties. In this paper, we proposed a deep learning 

model to unfold full energy peaks (FEP) for pseudo 

gamma spectroscopy of plastic gamma spectra. 

2. Materials and method

2.1 Convolutional Autoencoder 

Autoencoder is one of the representative generation 

models in artificial neural networks. Autoencoder is 

consisting of encoder and decoder layers; In the encoder 

layers, input signals are compressed in the lower 

dimension, which is called as code. In the decoder layers, 

output signals are reconstructed in the identical 

dimension to input signal from codes. Previously, we 

developed a deep autoencoder for Compton edge 

reconstruction from plastic gamma spectra, and its 

performance was proven by measured plastic gamma 

spectra for single and multiple isotopes. [1] This study 

may be similar with our previous research, but we 

developed an advanced deep learning model, 

convolutional autoencoder (CAE), and applied it to 

unfolding of FEP. Figure 1 shows structure of developed 

CAE model. Hyper parameters of our model were tuned 

by a Bayesian optimization method [2]. 

2.2 Experimental setup 

EJ-200 which has cylindrical shape with diameter of 

30 mm and height of 50 mm was used as plastic 

scintillation detector. For signal processing, DP5G, a 

pulse processor by the Amptek, was used. Operating high 

voltage was supplied by NHQ 224M, a high voltage 

supplier by the ISEG.  

The aluminum dark box was used to reduce 

background radiation, whose internal dimension is width 

of 590 mm, height of 430 mm and length of 890 mm. 

Detector was placed on the bottom plate of the box. For 

gamma ray sources, 22Na, 54Mn, 57Co, 60Co, 109Cd, 133Ba, 
137Cs and 152Eu, isotope products by the Eckert & Ziegler, 

were used. Position of sources was set to 1.25 cm away 

from the detector window, and measured for various 

measurement periods. Energy calibration of measured 

spectra was conducted using parametric optimization 

method [3].  

2.3 Monte Carlo simulation 

MCNP 6.2 was used to simulate plastic gamma spectra. 

Experimental environment was implemented as 

simulation geometry, and composition and densities of 

materials were defined by referring material data report 

[4]. Pulse height tally with Gaussian energy broadening 

Fig. 1 Structure of convolutional autoencoder 
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(GEB) card was used to simulate distribution of energy 

deposition in a plastic scintillation detector. To simulate 

energy broadening effects of plastic gamma spectra, 

GEB card was activated when simulating distribution of 

energy deposition using pulse height tally. GEB 

coefficients were calculated by parametric optimization 

[3] using experimental spectra with measuring period of 

an hour. Used GEB coefficient is 0.0004 for “a”, 0.3704 

for “b” and -0.4999 for “c”.  

Using MCNP simulation, 200,000 plastic gamma 

spectra were simulated. Corresponding to simulated 

spectra, FEP spectra were generated manually by 

referring emitted gamma energies and their intensities. 

Generated spectra paired by GEB and FEP were used as 

dataset to train our CAE model. 

3. Results

CAE was implemented in the Python environment 

using the Tensorflow 2.0 library [5]. Among generated 

dataset, 160,000 of them were used as training set, 

30,000 of them were used and validation set and 10,000 

of them were used as test set.  

To compare unfolding results with full energy peak 

spectra, a mean squared logarithmic error (MSLE) was 

used as loss function, which is described as following 

equation.  

𝑀𝑆𝐿𝐸 =  (1 𝑁⁄ ) ∑ {log(𝑦𝑛 + 1) − log(𝑦̂𝑛 + 1)}2𝑁
𝑛=1   (1)

where, 𝑖 means channel number, 𝑁 is the total number of 

channels, 𝑦𝑛  means nth value in FEP spectrum, and 𝑦̂𝑛

means nth value in unfolded spectrum.  

CAE was trained with established training and 

validation sets for 300 epochs. For callback functions, 

model check point option was activated to save the best 

model built during training procedure, and the best 

model in training procedure was used as final model. 

Performance of trained CAE was tested using generated 

test set. Figure 2 show examples of unfolding results for 

simulated spectra of single and multiple radioisotopes in 

test set. 

(a) 54Mn&57Co&60Co&137Cs 

(b) 22Na&57Co&60Co&109Cd&152Eu 

(c) 22Na&54Mn&60Co&109Cd&133Ba&137Cs 

Fig. 2 Unfolding results for several spectra in test set 

4. Conclusion

A CAE was presented to unfold FEPs from plastic 

gamma spectra. By unfolded FEPs, identification and 

quantitation of gamma ray sources are possible for 

plastic scintillation detectors. It can be utilized for 

identification and quantitation of radioactive materials in 

radiation portal monitors or spectroscopic dosimetry 

using plastic scintillation detectors. 
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