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1. Introduction

The condition of sensors is critical because the 
decision for control action, either by the operator or by 
the automatic controller, depends on the plant state 
reflected by sensors [1]. Recently, the interest in 
autonomous control is increasing and then the reliability 
of signal becomes more important for the success of it. 
For this reason, on-line monitoring (OLM) techniques of 
sensors and signals have been an active research area in 
nuclear power plants (NPPs). 

Many researches have been performed for the signal 
validation so far. The methods for signal validation can 
be divided into model based or data-driven approaches. 
The model-based approach was applied in early studies 
of this topic by understanding the physical mechanism of 
the system and presenting an accurate model to detect the 
failure of signal. Zhao proposed a physical model based 
approach combining the simulation model and Principal 
Component Analysis (PCA) to compensate for the 
disadvantages of the physical model and defects of 
Helical Coil Steam Generator Systems [2]. This method 
was applied to the case of  a secondary side tube blockage. 
Ning and Chou proposed a mathematical mode base for 
the sensor defect detection, and applied it to NPP’s 
systems [3]. 

 Data-driven approaches are using historical operation 
data without presenting an accurate model. Examples 
includes Principal Component Analysis (PCA), 
Multivariate State Estimation Techniques (MSET), 
Auto-Associative Kernel Regression (AAKR), Artificial 
Neural Networks (ANN). Pantoni proposed multiple 
failure signal validation in NPPs using ANN in accident 
scenarios [4]. Holbert used Process Empirical Modeling 
(PEM) and Fuzzy ANN for determining signal failure [5]. 
Eryurek and Upadhyaya proposed an adaptive back-
propagation network for signal validation of NPPs [6].  
Nabeshima et al. proposed a methodology to detect 
anomaly signals using Associative ANN for the typical 
normal operational patterns in NPPs [7]. Choi et al. 
proposed a signal validation method using a supervised 
learning for NPPs in an emergency situation [8]. 

However, those approaches have several issues in 
detecting sensor and signal failures. First, some of 
proposed methods were focused on the failure detection 
in the steady state [3, 5-7] in which the signal is not 
changing rapidly. For instance, in an emergency situation 
in which the signal is changing dramatically over time, 
those methods are not applicable. Second, many data-
driven approaches applied the supervised learning and 

thus are able only to detect trained failures [4-8]. Since 
there are thousands of signals in NPPs and then different 
types of failures, it is practically impossible to train all 
the failure types of signals. 

In this light, this study suggests an algorithm to detect 
signal failures in the emergency situation using the 
Variational Auto Encoder (VAE)-Long Short Term 
Memory (LSTM) which is an unsupervised learning 
method. First, a structure of algorithm to detect signal  
failure is developed by using the VAE-LSTM. Then, the 
training and test data are collected by using a compact 
nuclear simulator (CNS) for the loss of coolant accident 
(LOCA). Then, an algorithm using thresholds of 
reconstruction error has been developed. Finally, the 
suggested algorithm has been tested. 

2. Methodology

2.1 VAE 

VAE is a modified version of Auto-Encoder (AE), one 
of representative unsupervised learnings that are trained 
to reconstruct input data. The structure of VAE is shown 
in Fig. 1. 

Fig. 1. The architecture of VAE 

VAE adds a variational constrain that the latent 
variable z is subject to a normal distribution and the 
decoder starts with sampling from the distribution. 
Accordingly, VAE can map the training data to a normal 
distribution and generate new samples from the 
distribution [9]. Encoder and Decoder are given by 
probabilistic function q(z|x,ϕ) and p(x|z,θ). q is the 
approximate posterior called adversarial model or 
encoder, while p is the likelihood of x given z called 
generative model or decoder [9, 10]. VAE is a special 
unsupervised learning generative model trying to 
reconstruct its input data with 𝑥𝑥� as close as possible by 
minimizing [11]. 



2.2 LSTM 
LSTM is based on the Recurrent Neural Network 

(RNN) and capable of learning long-short term 
dependency problem [8]. The key to LSTM is the cell 
state (𝐶𝐶𝑡𝑡), which enables the information to flow along is 
unchanged. The distinctive feature of the LSTM 
structure is the gate structure, which consists of the forget 
gate, the input gate, and the output gate. The structure of 
LSTM is shown in Fig. 2.  

Fig. 2. The architecture of LSTM 

𝑐𝑐𝑡𝑡−1: Initial cell state(Input) 
𝑐𝑐𝑡𝑡: Final cell state(Output) 
h: hidden layer activation 
x: current input 

The functions are computed by Equations (1) to (5) as 
below: 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑥𝑥𝑡𝑡𝑊𝑊𝑥𝑥𝑥𝑥 + ℎ𝑡𝑡−1𝑊𝑊ℎ𝑥𝑥 + 𝑏𝑏𝑥𝑥)  (1) 
𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑥𝑥𝑡𝑡𝑊𝑊𝑥𝑥𝑡𝑡 + ℎ𝑡𝑡−1𝑊𝑊ℎ𝑓𝑓 + 𝑏𝑏𝑓𝑓)  (2) 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑥𝑥𝑡𝑡𝑊𝑊𝑥𝑥𝑥𝑥 + ℎ𝑡𝑡−1𝑊𝑊ℎ𝑥𝑥 + 𝑏𝑏𝑥𝑥)  (3) 
𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥𝑡𝑡𝑊𝑊𝑥𝑥𝑥𝑥 + ℎ𝑡𝑡−1𝑊𝑊ℎ𝑥𝑥 + 𝑏𝑏𝑥𝑥)       (4) 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑐𝑐𝑡𝑡)     (5) 

where W is the weight matrix of each gate and b is the 
bias.  

At the forget gate (𝑓𝑓𝑡𝑡), it reflects some of the previous 
cell state (𝐶𝐶𝑡𝑡−1 ) for the cell state (𝐶𝐶𝑡𝑡 ). It is kept or 
discarded according to the previous output and the 
present value. The input gate (𝑖𝑖𝑡𝑡) adjusts the value after 
the input signal (𝑥𝑥𝑡𝑡 ) has passed through the complete 
connection layer of tanh as an activation function. 
Finally, the input signal (𝑥𝑥𝑡𝑡) passes through the output 
gate. The output gate (𝑜𝑜𝑡𝑡) considers past and modified 
input data, by adjusting the input signal (𝑥𝑥𝑡𝑡) to the tanh 
and making the output signal.  

3. Algorithm for the Detection of Signal Failures

An algorithm for the detection of signal failures in the 
emergency situation has been suggested as shown in Fig. 
3. The algorithm consists of four steps: Input Preprocess-

ing, signal reconstruction by using VAE-LSTM, Output 
Post-processing, and determination of signal failure.  
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Fig. 3. Algorithm for signal validation 

3.1 Input Pre-processing 

In this step, a normalization of input values was 
performed to improve the performance by converting the 
signal value. As the signal values have different scales, 
normalization can prevent convergence at the local 
minimum. The min-max normalization method is 
applied. The maximum and minimum values are 
determined from the training data and the input is 
calibrated within the range of 0 to 1 through Eq. 6. 

𝑋𝑋𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛 =  (𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

 (6) 

3.2 Signal Reconstruction 

In this step, the reconstructed data are generated by 
using the VAE-LSTM. This step attempts to produce the 
reconstructed data which is similar to the input data.  

3.3 Output Post-processing 

The post-processing step compares a normalization of 
input data and a normalization of reconstructed data and 
generates a reconstruction error. The error is calculated 
by Eq. 7. 

Reconstruction error =  �𝑥𝑥𝑥𝑥𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑥𝑥𝑛𝑛𝑟𝑟𝑥𝑥𝑥𝑥𝑛𝑛𝑟𝑟𝑡𝑡𝑛𝑛𝑖𝑖𝑥𝑥𝑡𝑡𝑥𝑥𝑥𝑥𝑛𝑛�
2
        (7) 

3.4 Determination of Signal Failures 
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This step determines the signal failure based on the 
threshold. If the reconstruction error exceeds the 
threshold, this signal is determined to be a failure. 

4. Experiments

4.1 Data set 

The training and test data were collected using CNS. 
The data represent the normal values of signal in the 
emergency situation. The total 81,000 data were 
collected for 54 scenarios in the LOCA, as shown in 
Table II. Ninety percent (90%) and ten percent (10%) of 
collected data are used for training and testing, 
respectively. 

Table II: The database used for network training 

Initiating 
Situation 

Number of 
scenarios 

Number of 
training sets 

Cold/hot leg loss 
of coolant 

accident (LOCA) 
54 81,000 

4.2 Training 

The VAE-LSTM model was trained so that the model 
produces the reconstructed value as same as the input 
value. Total 89 inputs including process parameters and 
component states were selected through correlation 
analysis for the target signals. The outputs are 15 signal 
that indicate main process parameters in the LOCA 
scenario.  

4.3 Threshold 

The upper line of the threshold of reconstruction errors 
to detect signal failures are determined from the 
reconstruction errors in the training. The threshold is 
calculated by the method suggested by Shewhart [12]. 
The center line (CL) and upper control limit (UCL) are 
calculated as follows:   

UCL =  μ + 3σ   (8) 
CL =  μ  (9) 

The μ and σ refer to the mean value and standard 
deviation of reconstruction errors. The UCL is used as 
the criteria to determine the signal failure. The signal is 
detected to be faulty when the output value generated by 
the model exceeds the threshold. Table I shows an 
example of UCLs for four signals. 

Table I: Threshold 

Loop1 
Tavg 

Loop2 
Tavg 

PZR 
pressure 

SG1 
pressure 

UCL 0.0263 0.0218 0.0271 0.002 

4.4 Result 

This study verified the suggested algorithm using the 
test data. Three types of failures are considered: stuck at 
high, low, and current value. 

Fig. 4 presents an example of signal failure detections 
for the “stuck at high (600°C)” of RCS Loop #1 Coldleg 
temperature in the LOCA scenarios. The upper of Fig. 4 
(a) shows that the faulty signal is injected, while the 
lower indicates that the reconstruction error exceeds the 
threshold and thus the algorithm detects the signal failure. 
Fig. 4 (b) shows how the algorithm works for the normal 
signals. The reconstruction error for the RCS Loop #2 
Coldleg temperature does not exceed the threshold.   

a. RCS Loop #1
Coldleg Temperature 

b. RCS Loop #2
Coldleg Temperature 

Fig. 4. VAE-LSTM output when stuck at the RCS loop1 
Tavg high degrees 

5. Conclusions

this study suggested an algorithm to detect signal 
failures in the emergency situation using the VAE- 
LSTM which is an unsupervised learning method. The 
data were collected from the CNS for the LOCA scenario. 
The algorithm was trained and tested for 15 signals.  
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